
Parallel Bayesian Additive Regression Trees

M. T. Pratola, H. Chipman, J. Gattiker, D. Higdon, R. McCulloch, and W. Rust

August 8, 2012

Abstract

Bayesian Additive Regression Trees (BART) is a Bayesian approach to

flexible non-linear regression which has been shown to be competitive with the

best modern predictive methods such as those based on bagging and boosting.

BART offers some advantages. For example, the stochastic search Markov

Chain Monte Carlo (MCMC) algorithm can provide a more complete search

of the model space and variation across MCMC draws can capture the level

of uncertainty in the usual Bayesian way. The BART prior is robust in that

reasonable results are typically obtained with a default prior specification.

However, the publicly available implementation of the BART algorithm in the

R package BayesTree is not fast enough to be considered interactive with over

a thousand observations, and is unlikely to even run with 50,000 to 100,000

observations. In this paper we show how the BART algorithm may be modified

and then computed using single program, multiple data (SPMD) parallel com-

putation implemented using the Message Passing Interface (MPI) library. The

approach scales linearly in the number of processor cores, enabling the practi-

tioner to perform statistical inference on massive datasets. Our approach can

also handle datasets too massive to fit on any single data repository.

Contents

1 Introduction 1

2 The BART Algorithm 2

2.1 The Sum of Trees Model . 3

2.2 The BART MCMC Algorithm . 3

3 Efficient and Parallel Computation 5

4 Timing Results 8

5 Scalability 11

6 Prediction and Sensitivity Analysis 15

7 Example 17

8 Conclusion 18

1 Introduction

The challenges confronting modern statistics are often very different from those faced

by classical statistics. For instance, in today’s applied problems one often has huge

datasets involving millions of observations and hundreds or thousands of variables.

Examples include the high-dimensional simulators found in computer experiments

[ref], large complex genetic datasets in biostatistics [ref] and massive datasets of con-

sumer behavior in computational advertising [ref]. In such problems, one challenge is

modeling complex data structures in a manner that is both efficient and lends itself

to useful inference.

The Bayesian Additive Regression Tree (BART) approach is presented in Chipman,

George, and McCulloch (2010) (henceforth CGM). CGM consider the fundamental

model

Y = f(x) + ε, ε ∼ N(0, σ2)

where x = (x1, . . . , xd) represents d predictors. The function f is represented as a sum

of regression tree models f(x) =
∑m

j=1 gj(x) where gj(x) represents the contribution

to the overall fit provided by the jth regression tree. The number of regression tree

models, m, is chosen to be large and the prior constrains the contribution of each

regression tree model so that the overall fit is the sum of many small contributions.

A Markov Chain Monte Carlo algorithm draws from the full joint posterior of all the

regression tree models and σ.

CGM compare the out-of-sample predictive performance of BART with a boosting

method, Random Forests, support vector machines, and Neural Nets and report that

BART’s performance is competitive. However, the data sets used for comparison

have sample sizes of at most n ≈ 15, 000 (the drug-discovery example). All the

BART computations reported in CGM are done using the function bart in the R

package BayesTree. For the larger sample sizes often confronted in modern statistical

applications, the bart/BayesTree implementation is hopelessly slow and uses large

amounts of memory.

In this paper we describe an implementation of the BART method which is able

to handle much larger data sets and is much faster for moderately sized data sets.

1

Our approach first simplifies the C++ representation of the regression tree mod-

els. We then simplify the Metropolis Hastings step in the BART MCMC algorithm

presented in CGM. Finally, and crucially, we show that with our simplified BART,

a Single Program, Multiple Data (SPMD) parallel implementation can be used to

dramatically speed the computation. Our lean model representation is propagated

across all processor cores while the data is split up into equal portions each of which

is allocated to a particular core. Computations on the entire data set are done by

computing results for each data portion on its own core, and then combining results

across portions. The approach scales linearly in the number of processor cores, and

can also handle datasets too massive to fit on any single data repository.

While prediction given a set of out-of-sample x’s is fairly straightforward using

BART, interpreting the fit may be difficult. Methods for interpretation often rely

on designing a large number of x at which to make predictions. We also show how

these prediction computations may be done with SPMD parallel computation.

The rest of the paper proceeds as follows. Section 2 reviews enough details of the

MCMC algorithm for fitting BART so that the reader may understand how the

three simplifications described above are carried out. Section 3 explains how we

have implemented an efficient and parallel version of the BART algorithm. Section 4

compares the actual times needed to run the BayesTree BART algorithm, the BART

implementation of this paper done serially, and the parallel BART implementation.

Section 5 details the scalability of our parallel BART implementation. Section 6

discusses parallel computation for large numbers of predictions. Section 7 presents

a few examples of analyzing data sets with large sample sizes using BART. Finally,

we summarize our findings in Section 8

2 The BART Algorithm

We briefly review those aspects of the BART methodology in CGM necessary for the

understanding of this paper. We borrow liberally from CGM.

2

2.1 The Sum of Trees Model

The BART model expresses the overall effect of the regressors as the sum of the con-

tributions of a large number of regression trees. In this section we provide additional

notation and detail so that we can describe our approach.

We parametrize a single regression tree model by the pair (T,M). T consists of the

tree nodes and decision rules. The splits in T are binary so that each node is either

terminal (at the bottom of the tree) or has a left and right child. Associated with

each non-terminal node in T is a binary decision rule which determines whether an x

descends the tree to the left or to the right. Typically, decision rules are of the form

“go left if xj < c” where xj is the jth component of x. Let b = |M | be the number

of terminal nodes. Associated with the kth terminal node is a number µk. M is the

set of terminal node µk values: M = (µ1, . . . , µb). To evaluate a single regression

tree function, we drop an x down the tree T until it hits terminal node k. We then

return the value µk. We use the function g(x;T,M) to denote this returned value µk

for input x and tree (T,M).

Let (Tj,Mj) denote the jth regression tree model. Thus the gj(x) introduced in

Section 1 is expressed as gj(x) ≡ g(x;Tj,Mj). Our sum of trees model is

Y =
m∑
j=1

g(x;Tj,Mj) + ε, ε ∼ N(0, σ2). (1)

The prior specification for the parameter ((T1,M1), . . . , (Tm,Mm), σ) is key to the

BART methodology. Since our focus here is on computation, the reader is referred

to CGM for the details.

2.2 The BART MCMC Algorithm

At the top level, the BART MCMC is a simple Gibbs sampler. Let T(j) denote all

the trees except the jth and define M(j) similarly. Our Gibbs sampler then consists

of iterating the draws:

(Tj,Mj) |T(j),M(j), σ, y, j = 1, 2, . . . ,m (2)

3

σ |T1, . . . Tm,M1, . . . ,Mm, y.

The draw of σ is straightforward since given all the (Tj,Mj), (1) may be used to

calculate ε, which can be treated as an observed quantity.

To make each of the m draws of (Tj,Mj), note that the conditional distribution

p(Tj,Mj|T(j),M(j), σ, y) depends on (T(j),M(j), y) only through

Rj ≡ y −
∑
k 6=j

g(x;Tk,Mk),

the n−vector of partial residuals based on a fit that excludes the jth tree. Condi-

tionally, we have the single tree model

Rj = g(x;Tj,Mj) + ε.

Thus, the m draws of (Tj,Mj) given (T(j),M(j), σ, y) in (2) are equivalent to m draws

from

(Tj,Mj) |Rj, σ, j = 1, . . . ,m,

and each one of these draws may be done using single tree methods.

Each single tree model draw of (Tj,Mj) is done using the approach of Chipman,

George, and McCulloch (1998). The prior specification is chosen so that we can draw

from the joint (Tj,Mj) |Rj, σ by first analytically integrating out Mj and drawing

from the marginal Tj |Rj, σ and then drawing from the conditional Mj |Tj, Rj, σ.

The draws Tj |Rj, σ are the heart of the algorithm. It is in these steps that the struc-

ture of the trees change. These draws are carried out using a Metropolis-Hastings

step. Given a current tree structure, a modification is proposed and the modification

is accepted or rejected (in which case the current structure is retained) according to

the usual MH recipe.

In CGM, four different tree modification proposals are used. First, there are a com-

plementary pair of BIRTH/DEATH proposals. A BIRTH proposal picks a terminal

node and proposes a decision rule so that the node gives birth to two children. A

DEATH step picks a pair of terminal nodes having the same parent node, and pro-

poses eliminating them so that the parent becomes a terminal node.

4

The CHANGERULE move leaves the parent/child structure of the tree intact, but

proposes a modification to the decision rule associated with one of the non-terminal

nodes. The SWAP move picks a pair of non-terminal parent/child nodes and proposes

swapping their decision rules.

The CGM method randomly picks one of the four tree modification proposals.

3 Efficient and Parallel Computation

In this section we detail how we have efficiently coded and simplified the BART algo-

rithm and implemented single program, multiple data (SPMD) parallel computation.

Our first step was to code the tree models as simply as possible. Each node in a tree

is represented as an instance of a C++ class. The class has only six data members:

(i) a mean µ (ii) an integer v and integer c such the the decision rule is left if xv <

cth cutpoint (iii) a pointer to the parent node (iv) pointers to left and right children.

Note that for a terminal node the pointers to left and right children are not assigned.

For each component of x a discrete set of possible cutpoints are precalculated so that

a cutpoint may be identified with an integer. This is the minimal information needed

to represent a regression tree. A minimal representation speeds computation in that

when trees are dynamically grown and shrunk as the MCMC runs, little computation

is needed to make the modifications. In addition, in our SPMD implementation tree

modifications must be propagated across the cores so that keeping the amount of

information that must be sent small is important. A consequence of this lightweight

representation is that some quantities that characterize a tree must be recomputed on

demand, rather than stored. For example, to determine the depth of a node, pointers

to parents, grandparents, etc must be followed. However these computations are fast,

due in part to the typically small number of nodes in the trees used. Note that the

implementation in the R function bart (package BayesTree), C++ classes are also

used to represent nodes in a tree. However, the C++ classes in that implementation

are much more complicated so that more computation and memory is needed to

maintain them.

5

Our second simplification relative to CGM (and bart/BayesTree) is that only the

BIRTH and DEATH proposals are used. In Chipman, George, and McCulloch (1998)

it was found that using only BIRTH/DEATH moves resulted in an inferior MCMC

exploration of the model space. Results obtained with different random number

generator seeds could be dramatically different. However, these findings were in

the context of a single regression tree model. BART behaves in a fundamentally

different way, with individual trees that typically contain far fewer nodes. Small

trees correspond to a more easily searched space. We have found, in many examples,

that the fits obtained using only the BIRTH/DEATH moves are extremely similar

to those obtained using all four moves discussed above in Section (2). It may be

possible to efficiently code additional proposals, but our goal was to do things as

simply as possible.

Finally, we outline our SPMD parallel computation. Given p + 1 processor cores

numbered 0, 1, 2, . . . , p, we split the data (y, x) into p (approximately) equally-sized

portions,
(
y(1), x(1)

)
, . . . ,

(
y(p), x(p)

)
where the ith data portion resides on core i.

The current state of the regression tree models ((T1,M1), (T2,M2), . . . , (Tm,Mm))

is copied across all p + 1 cores. The algorithm proceeds in a master-slave arrange-

ment, where core 0 contains no observed data and only manages the MCMC sampler,

while all computations involving the observed data take place on the p slave cores

in parallel. Figure 1 illustrates the setup. Each large rectangle in the figure repre-

sents a core. Within each core, multiple trees are depicted representing the (Tj,Mj).

However, core i only has data portion y(i), x(i).

As a simple example consider the draw σ |T1, . . . Tm,M1, . . . ,Mm, y. To make this

draw we just need the sufficient statistic
∑n

i=1 ε
2
i , where n is the total number of

observations and εi = yi −
∑m

j=1 g(xi;Tj,Mj). Since each core has copies of all the

(Tj,Mj) it can compute the εi for its data portion and sum their squares. To make

the draw of σ, the master node sends a request out to each slave core and each core

responds with its portion of the total residual sum of squares. The master core adds

up the residual sums of squares portion received from each slave and then draws σ.

The ability to decompose sufficient statistics into sums of terms corresponding to

different parts of the data enables this SPMD approach.

6

Consider the case of a BIRTH step. A particular terminal node of tree Tj in our

sum of trees model has been chosen. A candidate decision rule (given by a choice

of (v, c)) has been proposed. If we accept the move, the terminal node will be

assigned the decision rule, and will be given a left and right child (and will hence

cease to be a terminal node). To evaluate the MH acceptance probability of this

proposed tree modification we need only know the sum of the partial residuals Rj

for the observations assigned to the new left child and the sum for the observations

in the new right child. This simplification is again the result of sufficiency under the

assumption of normal errors. The master node manages the MH step. To compute

the partial residual sums, the master sends out requests to the slaves and then sums

the partial sums of the partial residuals. If the move is accepted, the master node

then must propagate the change in Tj and Mj out to all the slaves.

The overall parallel MCMC sampler is summarized in Table 1. The calculations

and communications required for each step of the MCMC are summarized by de-

scribing each operation performed on the Master node and on a given Slave node.

The number of bytes for communication operations are specified as s(# bytes) and

r(# bytes) for sends and receives respectively. Note that at each MCMC iteration,

the BIRTH/DEATH proposals for Tj |Rj, σ draws will involve at most m tree mod-

ifications that must be propagated across the slaves, depending on how many MH

proposals are accepted. The sufficient statistics needed for the left/right nodes to un-

dergo BIRTH/DEATH are denoted with subscripts l, r in the table. TheMj |Tj, Rj, σ

draws will involve propagating
∑m

j=1 bj new µ values across the slaves. The current

value of σ need only be maintained on the master core, so the communication over-

heard in this step comes from receiving the partial residual sums-of-squares (RSS)

from the slaves.

None of the parallel communications outlined depend on the sample size of the

data set, and all but two are a small constant number of bytes. Conditional on

the tree model being accessible on each core, all expensive computations involving

the actual data (e.g. calculation of the partial sufficient statistics) are peformed

independently on each slave core operating solely on the subset of data assigned to

that core. Because of our lean model representation this algorithm is able to sample

7

Figure 1: Each core has only a portion of the complete dataset (y, x) but all the

model fit information (represented here by the trees).

from the posterior distribution p((T1,M1), . . . , (Tm,Mm), σ|y) efficiently with little

communication overhead between computing cores.

The notions of sufficiency and the reduction of data to a statistical model figure

prominently in this efficient implementation of BART. The large volumes of data are

characterized by a few sufficient statistics and the simple statistical model, giving

a compressed representation of the data that can be held in each cores local mem-

ory. This enables the quick exploration of the model space with the parallel BART

algorithm.

4 Timing Results

Here we look at how this MCMC implementation speeds up with additional pro-

cessors, considering a single dataset (x, y) where y is a 200,000-vector and x is

200,000×40. These data are produced by a realization of the random function gener-

ator of Friedman (2001). The entries of x are iid draws from a U [−1, 1] distribution.

Briefly, given xi, a row of x, yi is an additive combination of randomly produced

8

Op Master Slave Op

(bytes) (bytes)

Tj|Rj, σ ∀j = 1, . . . ,m

BIRTH BIRTH

s(12) Proposed split node, variable

and cutpoint

Split node, variable and cut-

point

r(12)

Calculate partial suff. stat.

r(40) Suff. stat. nl, nr,
∑
Rl,
∑
Rr,
∑
R2

l ,
∑
R2

r s(40)

MH Step

s(28) If accept BIRTH: node, vari-

able, cutpoint, µl, µr

Update node, variable, cut-

point, µl, µr

r(28)

s(0) Else reject BIRTH signal Else reject BIRTH signal r(0)

DEATH DEATH

s(8) Nodes of children to kill Nodes of children to kill r(8)

Calculate partial suff. stat.

r(40) Suff. stat. nl, nr,
∑
Rl,
∑
Rr,
∑
R2

l ,
∑
R2

r s(40)

MH Step

s(28) If accept DEATH: new termi-

nal node and µ

Update new terminal node and

µ

r(28)

s(0) Else reject DEATH signal Else reject DEATH signal r(0)

Mj|Tj, Rj, σ ∀j = 1, . . . ,m

Calculate partial suff. stat. for

all bj bottom nodes

r(20bj) Suff. stat. {ni, Ri, R
2
i }

bj
i=1 s(20bj)

Gibbs Step

s(8bj) Gibbs draw of Mj Update Mj r(8bj)

σ|·
Calculate partial RSS

r(8) RSS
∑
ε2 s(8)

Gibbs draw of σ

Table 1: Summary of parallel MCMC sampler

9

normal kernels

yi =

q∑
`=1

a`q`(xi) + εi. (3)

The coefficients a` are iid U [−1, 1] draws. We take q = 30 and εi to be iid N(0, σ2)

with σ = 0.15. The normal kernels q`(x) are determined by first randomly selecting

a subset of components [`] of x, giving x[`], randomly rotating these component

directions with rotation matrix U`, and then stretching or dilating these rotated

components according to the diagonal matrix D`

q`(x) = exp

{
−1

2
(x[`] − µ`)

TU`D
−1
` UT

` (x[`] − µ`)

}
.

The mean vectors µ` are independent U [−1, 1] draws, same as the x[`]’s. The diagonal

matrix D` has diagonal entries dk, with
√
dk ∼ U [.1, 2].

This particular function realization produces components [`] containing between 2

and 8 components of x in the q = 30 terms in (3). While the complexity of the

function might have some effect on the computational time to carry out the MCMC,

the timing is dominated by the size of the dataset (x, y).

Table 2: Time to complete 20K MCMC iterations for a 200,000×40 dataset. The

number of processors includes the slave processor. The run time is wall clock time

in seconds.

processors run time (s)

2 347087

4 123802

8 37656

16 16502

24 9660

30 6303

40 4985

48 4477

10

●
●

●

●

●

●

●

●

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

number of processors

1

ru
nt

im
e

(h
ou

rs
−1

)

Figure 2: The inverse of wall clock time (in hours−1) required to carry out 20K

iterations of the parallel MCMC implementation for sampling the BART posterior

distribution as a function of the number of processors. Here the dataset is 200000×40,

produced by Friedman’s random function generator.

Table 2 shows the time required to carry out the MCMC draws as a function of the

number of processors, using this parallel implementation of BART. Here a total of

20,000 MCMC iterations were carried out for each timing run. As expected, the

running time decreases with the number of processors, and the speed-up is nearly

linear – the run time is about half when the number of processors is doubled. Figure 2

shows how the inverse of run time increases as a function of the number of processors.

5 Scalability

We analyze the scalability of the proposed MCMC algorithm building on the e-

Isoefficiency approach presented in [ref Huerta et al 2007]. First, some basic quanti-

11

ties need to be defined. The speedup of an algorithm,

S(n, p) =
Tseq
Tpar

,

is the ratio of the times taken to run two instances of the algorithm. Typically, the

speedup is regarded as the ratio of the sequential (or serial) algorithm’s time to the

parallel algorithm’s time with p cores, as expressed above. Alternatively, the speedup

could instead be measured relative to a smaller number of parallel cores. Here, n

signifies the size of the problem, in our case the size of the dataset used in fitting the

BART model. The efficiency,

E(n, p) =
S(n, p)

p
,

is simply the speedup normalized to the number of cores used in the parallel version

of the algorithm. For instance, if the algorithm were embarassingly parallel (i.e. no

communication overhead) then the parallel time would be given by Tseq

p
, resulting in

an efficiency of 1.0.

The isoefficiency function is defined as

I(p, e) = ne,

where e is the desired efficiency level with p cores and ne represents the problem size

to reach an efficiency e with p cores. This implicit function essentially relates the

level of efficiency desired with the problem size, ne, required to achieve that level

of efficiency. Huerta et al. (2007) then define an algorithm to be e-Isoefficient as

follows:

Definition: e-Isoefficiency (Huerta et al., 2007) A problem is said to be e-Isoefficient

in a system with p processors if ∃ne and p′ > 0 such that for every p > p′, E(ne, p) =

e.

In other words, if the efficiency of the algorithm with p processors can be maintained

at the level e by increasing the problem size to some finite size ne, then the algorithm

is said to be e-Isoefficient, and thus scalable.

12

To determine if the BART MCMC algorithm is scalable in the sense of e-Isoefficiency,

the speedup of the algorithm must be determined. Considering the complexity of an

algorithm and assuming the time per operation is fixed, the runtime of an algorithm

can be expressed as

runtime = # of operations × time per operation

where the number of operations can be represented by the order of the algorithm

and the time per operation can be thought of as a machine-specific constant that

maps the algorithmic order to the algorithms runtime.

As a simple example, consider the draw of σ in our sampler which requires the

residual sum of squares. In a serial algorithm, the order of this calculation is O(n)

and we can think of the runtime being c0 × n for some constant c0. In contrast, the

parallel algorithm consists of the slave codes each calculating the partial residual sum

of squares, a calculation of order O
(

n
p

)
which happens simultaneously on all slaves.

Subsequently, the results from the p slaves are collected and added on the master

node, a calculation of order O(p). The runtime of each of these components of the

parallel algorithm can be thought of as c1 × n
p

and c2 × p. An approximation of the

speedup can then be calculated as the fraction of these serial and parallel runtimes.

Applying these concepts to the entire MCMC sampler, it turns out that the speedup

of BART is

S(n, p) =
α1mn+ α2mb+ α3n+ α4m

β1m
n
p

+ β2mb+ β3
n
p

+ β5m+ β6
(4)

where n
p

is taken as the problem size on each slave node in the parallel implementation

of the MCMC algorithm, b is a random variable representing the tree depth of all m

trees under the prior, and the other variables are as defined previously. Here, the α’s

and β’s are the unknown machine-specific parameters, and we have simplified the

expression by collecting all like terms.

A unique characteristic of the proposed MCMC algorithm is that the speedup de-

pends on the random variable b. Determining scalability in such a situation does not

13

Figure 3: Expected efficiency of the BART MCMC algorithm for three problem sizes.

The horizontal solid grey line represents the maximum efficiency of 1.0.

14

appear to have been explored in the literature. We consider the notion of Expected e-

Isoefficiency, by determining the e-Isoefficiency when utilizing the expected speedup,

where the expectation is taken with respect to the prior distribution on the number

of terminal nodes, π(b). Although this distribution is not known in closed form,

samples from it can be easily constructed by drawing from the prior distribution of

node depth.

To simplify the analysis, we take the machine-specific parameters as all equal to

1 which is akin to considering speedup in terms of algorithmic order rather than

having a dependence on the actual machine(s) used. However, one could setup

experiments to determine the values of these machine-specific parameters which may

be useful in sizing a problem to the actual hardware available to the practitioner.

The resulting expected efficiency curves for three problem sizes are shown in Figure

3. This plot indicates that the proposed algorithm is efficient and scalable, as the

expected efficiency curves with an increased problem size always lie above efficiency

curves with smaller problem sizes. That is, if we increase the number of cores, we

can maintain a desired level of efficiency by increasing the problem size accordingly.

6 Prediction and Sensitivity Analysis

Predictions of the function f at unobserved input settings x∗ can be constructed using

the sampled posterior. For example, the posterior mean for f can be estimated by

f̂(x∗) =
1

N

N∑
i=1

m∑
j=1

gj(x
∗|T i

j ,M
i
j)

where i indexes theN MCMC draws. Uncertainty bounds can be similarly calculated.

Such computations are embarassingly parallel by simply subsetting the inputs x∗ =

(x∗(1), . . . , x
∗
(p)) over p computational cores and performing the predictions (or other

calculations) for these subsets independently on each core.

Calculation of main effect functions (Cox, 1982; Sobol’, 1993) or sensitivity indices

Saltelli et al. (2008) can also be performed efficiently using the predicted response

15

with some minor communication overhead. Sobol’s functional ANOVA decomposi-

tion uniquely represents f(x) as the sum of increasingly complex terms

f(x) = f0 +
d∑

k=1

fk(xk) +
∑

1≤k<`≤d

fk`(xk, x`) + · · ·+ f1···d(x1, . . . , xd).

The functions are computed by integrals over the x-space, so that

f0 =

∫
[−1,1]d

f(x)dx and fk(xk) =

∫
[−1,1]d−1

f(x)dx−k − f0,

where dx−k includes all components of x but the kth. The above integrals can easily be

approximated via Monte Carlo integration, drawing x’s uniformly over their domain,

and using the posterior mean estimate f̂(x).

Similarly, the 1-way sensitivity index Sk for input k is

Sk = Vk

V

=
V arxk(Ex−k

(f |xk))
V ar(f)

≈
∫
xk

f̂2
kdxk∫

x f̂2(x)dx−f̂2
0

.

Since the calculation of such indices involve integrals over the input space, there is

some communication cost, but it is easily managed. Saltelli et al. (2008) approximate

these calculations using Monte Carlo. For instance, the numerator can be calculated

as

Vk ≈
ns∑
j=1

f̂(xaj1, x
a
j2, . . . , x

a
jd)× f̂(xbj1, x

b
j2, . . . , x

a
jk, . . . , x

b
jd)− f̂ 2

0

using samples a, b each of size ns from the input space. These samples hold a common,

independent value for xjk, but are otherwise independent. This calculation can be

implemented in parallel by generating matrices A(i) and B(i) on the i = 0, . . . , p slave

nodes where each row of a given matrix represents a randomly sampled point in

the d−dimensional input space. Each matrix has approximately ns

p
rows generated

independently on each core. The samples can be drawn from a uniform distribution

or a quasi Monte Carlo strategy may be used, such as a Sobol sequence. One must

ensure that the matrices are unique on each core, so for a uniform sampling strategy

16

the random number generator seed must be different on all the cores. The integrals

can then be approximated using the above summation by computing partial sums

with the generated samples on each core and communicating these partial sums back

to the master node. The master node then averages the partial results to arrive at

the final Monte Carlo approximation of the sensitivity indices. This same parallel

procedure can be used to approximate the total sensitivity index, ST
k , of which the

exact required calculations are described in detail in Saltelli et al. (2008).

7 Example

Taking the 200,000×40 dataset described in Section 4, we now show main effect func-

tions from a sensitivity analysis and hold-out predictions produced by the MCMC

carried out using this parallel implementation for BART. Scatterplots of y vs. each

xk are given in Figure 4 for the first 10,000 rows of (x, y).

The MCMC was carried out on 48 processors for 500,000 iterations, with the first

100,000 being discarded for burn-in. From these 400,000 post burn-in realizations

of the posterior, an equally spaced sample of 600 BART surfaces, each consisting

of a weighted sum of 200 trees, were saved to a file. These 400 posterior surfaces

were then used to estimate main effect functions of the posterior mean surface and

to predict a holdout set of x′s.

The light lines in the Figure 4 show estimates of the mean shifted main effect func-

tions f̂0 + f̂k(xk), k = 1, . . . , 40, as described in Section 6. Finally, Figure 5 shows

holdout predictions and accompanying two-standard deviation error bars for a ran-

domly drawn collection of 10,000 x∗’s and corresponding y∗’s produced by the func-

tion machine realization described in Section 4. Unlike the 200,000×40 training

sample (x, y), this hold out sample (x∗, y∗) does not have normal noise added to the

function value to produce y∗. The RMSE for the holdout predictions is 0.082.

17

Figure 4: Scatterplots of each column of x and the function output y. Of the 200,000

data realizations in the dataset, only the first 10,000 are shown here. The light lines

give the main effect functions estimated from the fitted BART surface.

8 Conclusion

We have presented and implemented a straight-forward SPMD approach for sampling

the posterior distribution resulting from BART. In addition we have also constructed

post processing parallel code to carry out basic sensitivity analyses and prediction.

While timings and analyses were given for a rather small 200K dataset, this parallel

implementation of BART has been successfully applied to millions of observations

and has run on hundreds of cores.

The code, written in C++ using MPI, is available at [WEBSITE? ROB?]

18

References

Chipman, H., George, E., and McCulloch, R. (2010). “BART: Bayesian additive

regression trees.” The Annals of Applied Statistics , 4, 1, 266–298.

Cox, D. C. (1982). “An analytical method for uncertainty analysis of nonlinear

output functions, with applications to fault-tree analysis.” IEEE Transactions in

Reliability , 31, 265–268.

Friedman, J. (2001). “Greedy function approximation: a gradient boosting machine.”

Annals of Statistics , 1189–1232.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Saisana, M., and Tarantola, S. (2008). Global sensitivity analysis: the primer .

Wiley Online Library.

Sobol’, I. M. (1993). “Sensitivity analysis for non-linear mathematical models.”

Mathematical Model. Comput. Exp., 1, 407–414.

19

Figure 5: 10,000 holdout predictions and their corresponding two-standard deviation

error bars. The holdouts, produced from the same realization of the random function

machine described in Section 4, do not have additional white noise εi added to their

values.

20

