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1. HeterBART

BART, Bayesian Additive Regression Trees
(Chipman, George, and McCulloch (2010))

BART flexibly fits the conditional mean of a response.

HeterBART flexibly fits the conditional mean and the conditional
variance.



BART, Bayesian Additive Regression Trees

fits the basic model:

by,

Yi = f(xi) +€i, € ~ N(O,Uz)

expressing f as a sum of regression trees (ensemble modeling).

putting prior information on each regression tree so that each
tree makes a small contribution to the overall fit (each tree is
a weak learner - as in boosting).

putting prior information on each regression tree and o so
that it does not overfit (use the prior to regularize the fit).

Drawing from the posterior of the trees, and hence f, using an
effective MCMC.



A single tree model:

Let T denote the
tree structure including
the decision rules.

Let M = {"”1‘, H2s e ,-’-"b}
denote the set of
bottom node pi's.

Let f(x; T, M) x,<d X, =d
be a regression tree function

that assigns a p value to x.

A single tree model:

y=f(x;T,M) +e



The BART model:
Y=f(x)+0Z

m

F(x) =Y f(x; Ti, M;)

i=1

where,

» each f(x; T;, M;) represents a single tree model.
» m is hundreds, thousands.
» prior pushes each T; to be a small tree.

» prior shrinks all the p in all the M; towards 0.

Note that each T is inferred so that the size of each tree and
hence the number of p is not fixed.



Make the overall fit, the sum of little dabs of fit !l




The HeterBART model:

Y =f(x)+s(x)Z

Fx) = f(x; Ti, M)
i=1
s(x)= || s(x:Ti, Si)
Each (T;, M;) gives a tree model for a mean.

Each (7}, S;) gives a tree model for a standard deviation.

Z ~ N(0,1).



Y =1f(x)+s(x) Z




At each MCMC iteration we have draws of all the

(T,',M,'), i:1,2,...,m

and

(7775f)7 i:1,2,...,ml

At MCMC iteration d we have a draw fy of the function f
and a draw sy of the function s.

So, for example, at any x, we could use

ol

. 12
Fx) == falx)
d=1



2. Simulated Example

F(x) and f(x) £ 25(x) where hat is the posterior mean.

. . . . . .
0.0 02 0.4 06 0.8 1.0
xp



f(x)

Pointwise intervals.

Inference for f. Inference for s.
1 -- true mean Va = = true standev
estimated mean 77 estimated standev
© = 95%interval K4 0 | - — 95%interval
4 —
i [P
i
-y
r
| ’~ J_. 4 < o
4 - ~—~ 1]
o @
,
4 v _, e
. -,




The previous displays used the fact that x is one-dimensional.

Our next two displays can be used with a vector x of any
dimension.
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Given {x;},
VS §(X,').

sort by §(x;) then plot 95% quantile intervals for s(x;)
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Given training or test (x;, y;):

» for each (fy,sy) draw, let ¥y = fq(x;) + sq(x;)z4, z standard
normal.
» for each i compute the percentile of y; in the draws ;q.
If the model is right, the percentiles should look like draws from
the uniform.

Compare to the uniform using qqplots.

heterBART BART
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Usually, for numeric responses we check our out-of-sample
predictions using RMSE.

That just checks the point prediction.

Our Bayesian model give us a full predictive distribution for

Y |x

The qqplots allow us to assess the full distributional fit, rather
than just the point prediction.
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Of course, the Bayesian predictive may be more spread out than
the "true” Y|x since it reflects our underlying uncertainty.

predictive qgplots, heteroskedastic model predictive qgplots, homoskedastic model
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The magenta dashed line is the version we get by computing the
percentile of y; for Y ~ N(f(x;),3(x;)?), that is, we just plug in
estimates rather than using the full predictive.



3. Cars Example

Real example, with 15 predictor variables.
Y is the price of a used car, x is characteristics of the car.

So we are “nonparametrically” estimating two functions of 15
variables.
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Cross Validation

k is a key prior parameter which determines how smooth the
function f is.

Rather than using RMSE to use cross-validation to choose the
prior we use the e-distance measure of how good the qqg-plot is.

Each boxplot tells us how good the qg-plot looks on a bunch of
randomly chosen test data sets.
BART. heterBART.
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Variable selection:

f at left.
s at right.
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s(x) uses trim.other in addition to mileage and year.
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4. Fish and Alcohol Examples

Fish

The dependent variable y is the daily catch of fishing boats in the
Grand Bank fishing grounds (Fernandez et al., 2002).

The explanatory x variables capture time, location, and
characteristics of the boat.

After the creation of dummies for categorical variables, the
dimension of x is 25.
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predictive qaplots, heteroskedastic model predictive qgplots, homoskedastic model

| o
] S
@ | ® |
o =}
© | o |
E o e 3
S S
S « | 5 < |
o (=]
N o
o =}
o | o
°© T T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
sample quantile sample quantile

Even though we know y > 0, simple heterBART is not too bad!!
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Alcohol

The dependent variable y is the number of alcoholic beverages
consumed in the last two weeks. (Kenkel and Terza, 2001).

The explanatory x variables capture demographic and physical
characteristics of the respondents as well as a key treatment
variable indicating receipt of advice from a physician.

After the creation of dummies for categorical variables, the
dimension of x is 35.
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predictive qaplots, heteroskedastic model
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BART is not too bad!!
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5. Prior and MCMC

Key to BART is the simple prior on the bottom node i parameters.

In the prior, they are iid with

1~ N(0,72).

f(x) = Zui

so that,

f(x) ~ N(0, m72).

This makes the prior choice simple and greatly simplifies the
MCMC since at a key point we have conditional conjugacy which
allows us to integrate out the u's in a tree analytically.
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For the S; (standard deviations in the bottom nodes of the 7;) we
use:
o2~ 2 id.

2 )
12

Then

s(x) =[] e
i
This prior is not as simple as the ;1 one but by a simple

moment-matching strategy, we have a good heuristic for the choice
of v and .

And, the simplicity of the BART MCMC is maintained!!
And, we use the same priors for T and 7.
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Note:
The MCMC is actually pretty complex as it used Pratola’s
enhanced MCMC on a single tree which can work better than the

orginal Chipman, George, McCulloch moves.

Seems to work pretty good!!

Top: draws of S mw
o in BART. N ‘“

Midddle:
draws of s(x;)
for 5 i in
heterBART.

Bottom:

draws of av-
erage s(x;) in
heterBART. fe
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6. Conclusion
Adding in a fit the variance seems like a nice enhancement to
ensemble modeling.

In some applications, a point prediction is all you want but
sometimes you want the plus and minus!!

We still have normal errors and we working on this, but you have
to be careful. You can't make things too flexible.

And there is something to be said for

Y|x ~ N(f(x),s(x)?).
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