
Bayesian CART Model Search

by

Hugh Chipman, Edward I. George and Robert E. McCulloch1

The University of Waterloo,

The University of Texas at Austin

and
The University of Chicago

September 1995, revised December 1997

Abstract

In this paper we put forward a Bayesian approach for �nding CART (classi�cation and

regression tree) models. The two basic components of this approach consist of prior

speci�cation and stochastic search. The basic idea is to have the prior induce a poste-

rior distribution which will guide the stochastic search towards more promising CART

models. As the search proceeds, such models can then be selected with a variety of

criteria such as posterior probability, marginal likelihood, residual sum of squares or

misclassi�cation rates. Examples are used to illustrate the potential superiority of this

approach over alternative methods.

Keywords: binary trees, Markov chain Monte Carlo, model selection, model uncertainty,

stochastic search, mixture models.

1 Introduction

CART models are a
exible method for specifying the condi-

tional distribution of a variable y, given a vector of predictor

values x. Such models use a binary tree to recursively par-

tition the predictor space into subsets where the distribution

of y is successively more homogeneous. The terminal nodes

of the tree correspond to the distinct regions of the partition,

1Hugh Chipman is Assistant Professor of Statistics, Department of

Statistics and Actuarial Science, University of Waterloo, Waterloo, ON

N2L 3G1, hachipman@uwaterloo.ca. Edward I. George is the Ed and

Molly Smith Chair in Business Administration and Professor of Statis-

tics, Department of MSIS, University of Texas, Austin, TX 78712-1175,

egeorge@mail.utexas.edu. Robert E. McCulloch is Professor of Statis-

tics, Graduate School of Business, University of Chicago, IL 60637,

rem@gsbrem.uchicago.edu. For helpful discussions and suggestions, the

authors would like to thankWray Buntine, Jerry Friedman, Mark Glick-

man, Augustine Kong, Rob Tibshirani, Alan Zaslavsky, an associate

editor, two anonymous referees and the participants of the 1995 Interna-

tional Workshop on Model Uncertainty and Model Robustness held in

Bath, England This work was supported by NSF grant DMS 94.04408,

Texas ARP grant 003658130, and research funding from the Graduate

Schools of Business at the University of Chicago and the University of

Texas at Austin.

and the partition is determined by splitting rules associated

with each of the internal nodes. By moving from the root

node through to the terminal node of the tree, each obser-

vation is then assigned to a unique terminal node where the

conditional distribution of y is determined. CART models

were popularized in the statistical community by the semi-

nal book of Breiman, Friedman, Olshen and Stone (1984). A

concise description of CART modeling and its S-PLUS imple-

mentation appears in Clark and Pregibon (1992).

Given a data set, a common strategy for �nding a good tree

is to use a greedy algorithm to grow a tree and then to prune

it back to avoid over�tting. Such greedy algorithms typically

grow a tree by sequentially choosing splitting rules for nodes

on the basis of maximizing some �tting criterion. This gen-

erates a sequence of trees each of which is an extension of the

previous tree. A single tree is then selected by pruning the

largest tree according to a model choice criterion such as cost-

complexity pruning, cross-validation, or even multiple tests of

whether two adjoining nodes should be collapsed into a single

node.

In this paper we put forward a Bayesian approach for �nd-

1

ing CART models. The two basic components of this ap-

proach consist of prior speci�cation and stochastic search.

The basic idea is to have the prior induce a posterior dis-

tribution which will guide the stochastic search towards more

promising CART models. As the search proceeds, such mod-

els can then be selected with a variety of criteria such as pos-

terior probability, marginal likelihood, residual sum of squares

or misclassi�cation rates. Alternatively, a posterior weighted

average of the visited models can be easily obtained. In

a sense our procedure is a sophisticated heuristic for �nd-

ing good models rather than a fully Bayesian analysis which

presently seems to be computationally infeasible.

Our approach begins with the speci�cation of a manageable

prior distribution on the set of CARTmodels. This entails the

speci�cation of a prior on the tree space and of a prior on the

conditional distributions determined at the terminal nodes of

each tree. Combining this prior with the tree model likelihood

yields a posterior distribution on the set of tree models. A

feature of this approach is that the prior speci�cation can be

used to downweight undesirable model characteristics such as

tree complexity or to express a preference for certain predictor

variables. In this way the posterior will put higher probability

on the \better trees".

Although the entire posterior cannot be computed in non-

trivial problems, Metropolis-Hastings algorithms can still be

used e�ectively to explore the posterior. For this purpose,

we construct particular versions of such algorithms which

stochastically search for good tree models by rapidly gravi-

tating towards regions of high posterior probability. As op-

posed to conventional greedy approaches which restrict the

search to a particular \tree sequence", such algorithms search

over a much richer class of candidate trees. Furthermore, by

restarting our posterior search at trees found by other meth-

ods, our approach o�ers a systematic way to improve on al-

ternate methods.

The potential of our approach is illustrated in depth in Sec-

tion 7 where we apply it to the breast cancer data used by

Breiman (1996) and Tibshirani and Knight (1995). This data

consists of measurements on 683 breast tumors which might

be useful for predicting whether a tumor is benign or ma-

lignant. For various CART model priors, repeated stochastic

search of the posterior quickly found many models which were

better than than those found by greedy approaches. For ex-

ample, Figure 1 displays a �ve node CART models found by

our procedure. The misclassi�cation rate of this tree is 18

compared to a misclassi�cation rate of 30 for the best �ve

node greedy tree. In this example, we also considered restart-

ing our posterior search at trees found by bootstrap bump-

ing (Tibshirani and Knight (1995)), and found improvements

roughly 80% of the time.

A related Bayesian approach to classi�cation tree model-

ing was proposed by Buntine (1992) which, compared to our

approach, uses similar priors for terminal node distributions,

di�erent priors on the space of trees, and deterministic, rather

bare<2.5
bare>2.5

239/683

B

size<3.5
size>3.5

24/432

B

2/408

B

2/24

M

clump<6.5
clump>6.5

36/251

M

shape<2.5
shape>2.5

35/119

M

3/28

B

10/91

M

1/132

M

Figure 1: A �ve node tree found by by stochastic search. The

overall misclassi�cation rate is 18. The letters B and M, which

refer to benign and malignant tumors, indicate the response

which is in the majority in each node. The misclassi�cation

rates and number of observations are given below each node.

than stochastic, algorithms for model search. Priors for tree

models based on Minimum Encoding ideas were proposed by

Quinlan and Rivest (1989) and Wallace and Patrick (1993).

Oliver and Hand (1995) discuss and provide an empirical com-

parison of a variety of pruning and Bayesian model averaging

approaches based on CART. Paass and Kindermann (1997)

applied a simpler version of our stochastic search approach

(based on an early draft of this paper) and obtained results

which uniformly dominated a wide variety of competing meth-

ods. Other alternatives to greedy search methods include Sut-

ton (1991) who uses simulated annealing, Jordan and Jacobs

(1994) who use the EM algorithm, Breiman (1996), who av-

erages trees based on bootstrap samples, and Tibshirani and

Knight (1995) who select trees based on bootstrap samples.

Finally, during a revision of this paper, we became aware of

a similar parallel development of Bayesian CART approach

which is by Denison, Mallick and Smith (1997). Their ap-

proach is contrasted with ours in Section 8.

The paper is structured as follows. Section 2 describes the

general structure of a CART model. Section 3 describes prior

speci�cations for trees. Section 4 describes prior speci�cations

for terminal node models. Section 5 outlines computational

strategy for posterior exploration. Sections 6 and 7 compare

the performance of our approach with competing methods on

2

simulated and real data. Section 8 concludes with a discus-

sion.

2 The Structure of a CART Model

We begin with a discussion of the general structure of a CART

model so that the nature of the space on which we must place

our prior is understood. A CART model describes the con-

ditional distribution of y given x, where x is a vector of pre-

dictors (x = (x1; x2; : : : ; xp)). This model has two main com-

ponents: a tree T with b terminal nodes, and a parameter

� = (�1; �2; : : : ; �b) which associates the parameter value �i
with the ith terminal node. If x lies in the region correspond-

ing to the ith terminal node then y jx has distribution f(y j�i),
where we use f to represent a parametric family indexed by

�i. The model is called a regression tree or a classi�cation

tree according to whether the response y is quantitative or

qualitative, respectively.

The binary tree T subdivides the predictor space as follows.

Each internal node has an associated splitting rule which uses

a predictor to assign observations to either its left or right

child nodes. The terminal nodes thus identify a partition of

the observation space according to the subdivision de�ned by

the splitting rules. For quantitative predictors, the splitting

rule is based on a split value s, and assigns observations for

which fxi � sg or fxi > sg to the left or right child node

respectively. Note that this formulation is general enough to

handle arbitrary splitting functions of the form fh(x) � sg
versus fh(x) > sg by simply treating h(x) as another predic-

tor variable. For qualitative predictors, the splitting rule is

based on a category subset C, and assigns observations for

which fxi 2 Cg or fxi =2 Cg to the left or right child node

respectively.

For illustration, Figure 2 depicts a regression tree model

where y � N (�; 22) and x = (x1; x2). x1 is a quantitative pre-

dictor taking values in [0,10], and x2 is a qualitative predictor

with categories (A;B;C;D). The binary tree has 9 nodes of

which b = 5 are terminal nodes which subdivide the x space

into 5 nonoverlapping regions. The splitting variable and rule

are displayed at each internal node. For example, the leftmost

terminal node corresponds to x1 � 3:0 and x2 2 fC;Dg. The
�i value which identi�es the mean of y given x is displayed

at each terminal node. Note that �i decreases in x1 when

x2 2 fA;Bg, but increases in x1 when x2 2 fC;Dg. (See also
Figure 4).

If y were a qualitative variable, a classi�cation tree model

would be obtained by using an appropriate categorical distri-

bution at each terminal node. For example, if y was binary

with categories C1 or C2, one might consider the Bernoulli

model P (y 2 C1) = � = 1 � P (y 2 C2) with a possibly

di�erent value of � at each terminal node. A standard clas-

si�cation rule for this model would then classify y into the

category yielding the smallest expected misclassi�cation cost.

�2 = 5 �3 = 8

�1 = 1 �4 = 8 �5 = 2

X1 � 3 X1 � 5

X1 > 3 X1 > 5

X2 2 fC;Dg

X2 2 fA;Bg

X1 � 7

X1 > 7

Figure 2: A regression tree where y � N (�; 22) and x =

(x1; x2).

When all misclassi�cation costs are equal, this would be the

category with largest probability.

Association of the individual y values with the terminal

nodes is indicated by letting yij denote the j
th observation

of y in the i
th partition (corresponding to the i

th terminal

node), i = 1; 2; : : : ; b, j = 1; 2; : : :; ni. De�ne

Y � (Y1; : : : ; Yb)
0
; where Yi � (yi1; : : : ; yini)

0
; (1)

and de�ne X andXi analogously. For CART models it is typ-

ically assumed that, conditionally on (�; T), y values within

a terminal node are iid, and y values across terminal nodes

are independent. In this case, the CART model distribution

for the data will be of the form

p(Y jX;�; T) =

bY
i=1

f(Yi j �i) =
bY

i=1

niY
j=1

f(yij j �i): (2)

Although we emphasize the iid case, more general models can

be considered at the terminal nodes. For example, one might

3

use linear relationships such as E(yij j xij; �i) = xij�i at the

ith node. This would allow for modeling the mean of Y by

piecewise linear or quadratic functions rather than by con-

stant functions as is implied by the iid assumption.

For regression trees, we consider two models where f(yij j�i)
is normal, namely the mean shift model

yi1; : : : ; yini j �i iid � N (�i; �
2); i = 1; : : : ; b; (3)

where �i = (�i; �), and the mean-variance shift model

yi1; : : : ; yini j �i iid � N (�i; �
2
i
); i = 1; : : : ; b; (4)

where �i = (�i; �i). For classi�cation trees where yij belongs

to one of K categories, say C1; : : : ; CK, we consider f(yij j �i)
to be generalized Bernoulli (i.e. simple multinomial) namely

f(yi1; : : : ; yini j �i) =

niY
j=1

KY
k=1

p
I(yij2Ck)

ik
i = 1; : : : ; b; (5)

where �i = pi � (pi1; : : : ; piK), pik � 0 and
P

k
pik = 1. Note

that P (yij 2 Ck j pi) = pik.

Since a CART model is identi�ed by (�; T), a Bayesian

analysis of the problem proceeds by specifying a prior proba-

bility distribution p(�; T). Because � indexes the parametric

model for each T , it will usually be convenient to use the

relationship

p(�; T) = p(� j T)p(T); (6)

and specify p(T) and p(� jT) separately. This strategy, which
is commonly used for Bayesian model selection (George 1998),

o�ers the advantage that the choice of prior for T does not de-

pend on the form of the parametric family indexed by �. Thus,

the same approach for prior speci�cation of T can be used

for regression trees and classi�cation trees. Another feature

is that conditional speci�cation of the prior on � more eas-

ily allows for the choice of convenient analytical forms which

facilitate posterior computation. We proceed to discuss spec-

i�cation of P (T) and P (� j T) in sections 3 and 4 below.

3 Speci�cation of the Tree Prior p(T)

Instead of specifying a closed form expression for the tree

prior p(T), we specify p(T) implicitly by a tree-generating

stochastic process. Each realization of such a process can

simply be considered as a random draw from this prior. Fur-

thermore, many speci�cations allow for straightforward eval-

uation of p(T) for any T , and can be e�ectively coupled with

e�cient Metropolis-Hastings search algorithms, as is shown

in Section 5.

To draw from our prior we start with the tree consisting of

a single root node. The tree then grows by randomly splitting

terminal nodes, which entails assigning them splitting rules,

and left and right children nodes. The growing process is

determined by the speci�cation of two functions pSPLIT (�; T)

and pRULE(�j�; T). For an intermediate tree T in the process,

pSPLIT (�; T) is the probability that terminal node � is split,

and pRULE(� j �; T) is the probability of assigning splitting

rule � to � if it is split. The stochastic process for drawing a

tree from this prior can be described in the following recursive

manner:

1. Begin by setting T to be the trivial tree consisting of a

single root (and terminal) node denoted �.

2. Split the terminal node � with probability pSPLIT (�; T).

3. If the node splits, assign it a splitting rule � according to

the distribution pRULE(� j �; T), and create the left and

right children nodes. Let T denote the newly created

tree, and apply steps 2 and 3 with � equal to the new

left and the right children (if nontrivial splitting rules

are available).

In what follows, we restrict pSPLIT (�; T)

and pRULE(� j �; T) to be functions of the part of T above

(i.e. ancestral to) �. This insures that the process does not

depend on the order in which terminal nodes are considered

in steps 2 and 3. As a consequence, for any internal node,

the subtrees stemming from the right and left children are

independent. While in some cases this may be restrictive, we

�nd it to be a useful simplifying assumption.

We now proceed to discuss a variety of speci�cations for

pSPLIT and pRULE . As will be seen, these speci�cations can

be based on simple defaults, or can be made elaborate to allow

for special structure.

3.1 Determination of Tree Size and Shape

by pSPLIT

As we have de�ned it, a CART tree T is composed of a binary

tree and an assignment of splitting rules. To understand the

role of pSPLIT , it is useful to ignore the splitting rule assign-

ment and focus on the distribution of binary trees obtained by

successively splitting terminal nodes with probability pSPLIT
as in step 2 above. This would be the distribution of binary

tree components of T obtained by steps 1-3 above if there

were an in�nite supply of splitting rules.

Let us �rst consider the simple speci�cation,

pSPLIT (�; T) � � < 1. Under this speci�cation, the prob-

ability of any particular binary tree with b terminal nodes is

just �b�1(1��)b. This generalization of the geometric prob-

ability distribution is obtained by noting that a binary tree

with b terminal nodes must have (b� 1) internal nodes. Note

that setting � small will tend to yield smaller trees and is a

simple convenient way to control the size of trees generated

by growing process.

The choice pSPLIT (�; T) � � is somewhat limited because

it assigns equal probability to all binary trees with b terminal

nodes regardless of their shape. A more general form which

4

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Terminal Nodes

P
ro

ba
bi

lit
y

α=0.5, β=0.5

0 5 10 15 20 25 30

0.
0

0.
04

0.
08

Number of Terminal Nodes

P
ro

ba
bi

lit
y

α=0.95, β=0.5

0 5 10 15 20 25 30

0.
0

0.
10

0.
20

Number of Terminal Nodes

P
ro

ba
bi

lit
y

α=0.95, β=1

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Terminal Nodes

P
ro

ba
bi

lit
y

α=0.95, β=1.5

Figure 3: Prior distribution on number of terminal nodes.

The prior means are 2.1, 7.0, 3.7, and 2.9 respectively.

allows for controlling the size and shape of the generated trees

is

pSPLIT (�; T) = �(1 + d�)
�� (7)

where d� is the depth of the node � (i. e. the number of splits

above �), and � � 0. Under this speci�cation, pSPLIT is a

decreasing function of d�, more so for � large, making deeper

nodes less likely to split. The resulting prior p(T) puts higher

probability on \bushy" trees, those whose terminal nodes do

not vary too much in depth. Although more elaborate forms

of pSPLIT as a function of nodal ancestry can easily be con-

structed, (7) is
exible and simple.

In practice, we have found it convenient to choose � and

� by exploring the consequent prior marginal distribution of

some characteristic of interest such as the number of terminal

nodes. Such a marginal can be readily simulated and graphed,

facilitating the choice of � and �. For example, Figure 3

displays the prior distribution of the number of terminal nodes

for (�; �) = (:5; :5); (:95; :5); (:95; 1:0); (:95;1:5).

3.2 Speci�cation of the Splitting Rule As-

signments by pRULE

As described in Section 2, a splitting rule � is determined by

the choice of a predictor xi and the choice of a split value s

or a category subset C according to whether the predictor is

quantitative or qualitative. Thus, it is convenient to describe

pRULE(� j �; T) by a distribution on the set of available pre-

dictors xi, and conditional on each predictor, a distribution

on the available set of split values or category subsets. By

available, we mean those predictors, split values and category

subsets which would not lead to empty terminal nodes. For

example, if a binary predictor was used in a splitting rule, it

would no longer be available for splitting rules at nodes below

it.

As a practical matter, we only consider prior speci�cations

for which the overall set of possible split values is �nite. Thus,

each pRULE will always be a discrete distribution. This is

hardly a restriction since every data set is necessarily �nite,

and so can only be partitioned in a �nite number of ways. As a

consequence, the support of p(T) will always be a �nite set of

trees. Note also that because the assignment of splitting rules

will typically depend on X, the prior p(T) will also depend

on X. This dependence was noted by Buntine (1992) who

discussed its potential advantages.

A simple choice of pRULE(� j �; T), which seems to work

well in our examples, is the distribution obtained by choosing

xi uniformly from the available predictors, and then choosing

s uniformly from the available observed values of xi if xi is

quantitative, or choosing C uniformly from the set of avail-

able subsets if xi is qualitative. This choice, which we refer to

as the uniform speci�cation of pRULE, represents the prior in-

formation that at each node, available predictors are equally

likely to be e�ective, and that for each predictor, available

split values or category subsets are equally likely to be e�ec-

tive. An appealing feature of the uniform speci�cation is that

it is invariant to monotone transformations of the quantita-

tive predictors. Note also that it is uniform on the observed

quantiles of a quantitative predictor with no repeated values.

Although a natural default choice, the uniform speci�cation

for pRULE assigns lower probability to splitting rules based on

predictors with more potential split values or category sub-

sets. This feature is necessary to maintain equal probabil-

ity on predictor choices. The alternative uniform choice of

pRULE which is uniform across all available splitting rules,

downweights predictors with fewer potential split values or

category subsets. This seems unsatisfactory unless there is

an a priori reason to expect such variables to have less pre-

dictive value.

Non-uniform choices for pRULE may also be of interest.

For example, in choosing a variable it may be preferable to

place higher prior weight on predictors that are thought to

be more important. We may instead prefer models that use

only a few variables, i.e. variable selection. In this case, at

node �, pRULE would put greater mass on rules involving

variables already used in ancestors of �, and less on rules

involving unused variables. For the choice of split value, we

might expect a region to split more towards its middle than

near an edge and so might use a tapered distribution at the

extremes. One might also consider the distribution of split

values to be uniform on the available range of the predictor

and so could weight the available observed values accordingly.

For the choice of category subset, one might put extra weight

5

on subsets thought to be more important.

4 Speci�cation of the Parameter

Prior: p(� j T)

In choosing a prior for � j T , it is important to be aware

that using priors which allow for analytical simpli�cation can

substantially reduce the computational burden of posterior

calculation and exploration. As will be seen in Section 5, this

is especially true for prior forms p(�jT) for which it is possible
to analytically margin out � to obtain:

p(Y jX;T) =

Z
p(Y jX;�; T)p(� j T)d�: (8)

In the following two subsections, we describe a variety of prior

forms for which this marginalization is possible. These priors

are obtained by putting conjugate priors on terminal node

parameters and then assuming (conditional) independence of

parameters across terminal nodes. Such priors are simple to

describe and implement. Although we do not describe them

here, it is also possible to construct analytically tractable hi-

erarchical priors which use the tree structure to model pa-

rameter dependence across terminal nodes. Such priors are

described and investigated in Chipman, George & McCulloch

(1997).

4.1 Parameter Priors for Regression Trees

For regression trees with the mean-shift model normal model

(3), perhaps the simplest prior speci�cation for � j T is the

standard conjugate form

�1; : : : ; �b j �; T iid � N (��; �2=a) (9)

and

�
2 j T � IG(�=2; ��=2) (, ��=�

2 � �
2
�
): (10)

Under this prior, standard analytical simpli�cation yields

p(Y jX;T) =
c a

b=2Qb

i=1(ni + a)1=2

bX

i=1

(si + ti) + ��

!�(n+�)=2

(11)

where c is a constant which does not depend on T , si is (ni�1)
times the sample variance of the Yi values, ti =

nia

ni+a
(�yi� ��)2,

and �yi is the average value in Yi.

In practice, the observed Y can be used to guide the choice

of the prior parameters values for (�; �; ��; a). To begin with,

because the mean-shift model attempts to explain the varia-

tion of Y , it is reasonable to expect that � will be smaller than

the sample standard deviation of Y , say s
�. Similarly, it is

reasonable to expect that � will be larger than a pooled stan-

dard deviation estimate obtained from a deliberate over�tting

of the data by a greedy algorithm, say s�. Using these values

as guides, � and � would then be chosen so that the prior for

� assigns substantial probability to the interval (s�; s
�). Once

� and � have been chosen, �� and a would be selected so that

the prior for � is spread out over the range of Y values.

For the more
exible mean-variance shift model (4) where

�i can also vary across the terminal nodes, the conjugate form

is easily extended to

�i j �i � N (��; �2i =a) (12)

and

�
2
i
� IG(�=2; ��=2); (13)

with the pairs (�1; �1); : : : ; (�b; �b) independently distributed.

Under this prior, analytical simpli�cation is still straightfor-

ward, and yields

p(Y jX;T) =

bY
i=1

�
�
�ni=2(��)�=2

p
ap

ni + a
(14)

��((ni + �)=2)

�(�=2)
(si + ti + ��)�(ni+�)=2

�

where si and ti are as above.

As before, the observed Y can be used to guide the choice

of the prior parameters values for (�; �; ��; a). The same ideas

may be used with an additional consideration. In some cases,

the mean-variance shift model may explain variance shifts

much more so than mean shifts. To handle this possibility,

it may be desirable to choose � and � so that s� is more to-

ward the center rather than the right tail of the prior for �.

We might also tighten up our prior for � about the average

y value. In any case, it may be appropriate to explore the

consequences of several di�erent prior choices.

Finally, note that it may be desirable to further extend the

above priors to let the values of � and � depend on features

of T . For example, because more complex trees (i.e. �ner

partitions of the predictor space) are likely to explain more

variation, it might be reasonable to consider � and � as de-

creasing functions of tree complexity.

4.2 Parameter Priors for Classi�cation

Trees

For classi�cation trees where yij belongs to one of K cat-

egories C1; : : : ; CK under the generalized Bernoulli model

(5), perhaps the simplest conjugate prior speci�cation for

� = (p1; : : : ; pb) is the standard Dirichlet distribution of di-

mension K � 1 with parameter � = (�1; : : : ; �K), �k > 0

namely

p1; : : : ; pb jT iid � Dirichlet(pi j�) / p
�1�1
i1 � � �p�K�1

iK
: (15)

When K = 2 this reduces to the familiar Beta prior.

Under this prior, standard analytical simpli�cation yields

P (Y jX;T) =

�
� (
P

k
�k)Q

k
�(�k)

�b bY
i=1

Q
k
�(nik + �k)

� (ni +
P

k
�k)

(16)

6

where nik =
P

j
I(yij 2 Ck), ni =

P
k
nik and k =

1; :::;K over the sums and products above. For a given tree,

P (Y jX;T) will be larger when nodes are assigned more ho-

mogeneous values of y. To see this, note that assignments for

which the yij's at the same node are similar will lead to more

disparate values of ni1; : : : ; niK, which in turn leads to larger

values of P (Y jX;T).

The natural default choice for � is the vector (1; : : : ; 1) for

which the Dirichlet prior (15) is the uniform. However, by set-

ting certain �k to be larger for certain categories, P (Y jX;T)

will become more sensitive to misclassi�cation at those cate-

gories. This might be desirable when classi�cation into those

categories is most important.

5 Stochastic Search of the Posterior

For each of the parameter prior forms p(� j T) proposed in

Section 4, it is possible to analytically obtain p(Y j X;T) =R
p(Y jX;�; T)p(� jT)d� in (8), resulting in one of the closed

forms (11), (14) or (16). Combining these with one of the

CART tree priors P (T) proposed in Section 3, allows us to

quickly calculate the posterior of T

p(T jX;Y) / p(Y jX;T)p(T) (17)

up to a norming constant.

Exhaustive evaluation of (17) over all T will not be feasi-

ble, except in trivially small problems, because of the sheer

number of possible trees. (Recall that the number of possi-

ble trees is �nite because we have restricted attention to a

�nite number of possible splitting functions). This not only

prevents exact calculation of the norming constant, but also

makes it nearly impossible to determine exactly which trees

have largest posterior probability.

In spite of these limitations, Metropolis-Hastings algo-

rithms can still be used to explore the posterior. Such al-

gorithms simulate a Markov chain sequence of trees

T
0
; T

1
; T

2
; : : : (18)

which are converging in distribution to the posterior

p(T j Y;X) in (17). Because such a simulated sequence will

tend to gravitate towards regions of higher posterior proba-

bility, the simulation can be used to stochastically search for

high posterior probability trees. We now proceed describe the

details of such algorithms and their e�ective implementation.

5.1 Speci�cation of the Metropolis-Hastings

Search Algorithm

The Metropolis-Hastings (MH) algorithm for simulating the

Markov chain T
0
; T

1
; T

2
; : : : in (18) is de�ned as follows.

Starting with an initial tree T 0, iteratively simulate the tran-

sitions from T
i to T

i+1 by the two steps:

1. Generate a candidate value T � with probability distribu-

tion q(T i
; T

�).

2. Set T i+1 = T
� with probability

�(T i
; T

�) = min

�
q(T �

; T
i)

q(T i; T �)

p(Y jX;T
�)p(T �)

p(Y jX;T i)p(T i)
; 1

�
:

(19)

Otherwise, set T i+1 = T
i.

Under weak conditions (see Tierney 1994), the sequence (18)

obtained by this algorithm will be a Markov chain with limit-

ing distribution p(T j Y;X). Note that the norming constant

for p(T j Y;X) is not needed to compute (19).

To implement the algorithm, we need to specify the tran-

sition kernel q. We consider kernels q(T; T �) which generate

T
� from T by randomly choosing among four steps:

� GROW: Randomly pick a terminal node. Split it into

two new ones by randomly assigning it a splitting rule

according to pRULE used in the prior.

� PRUNE: Randomly pick a parent of two terminal nodes

and turn it into a terminal node by collapsing the nodes

below it.

� CHANGE: Randomly pick an internal node, and ran-

domly reassign it a splitting rule according to pRULE

used in the prior.

� SWAP: Randomly pick a parent-child pair which are both

internal nodes. Swap their splitting rules unless the other

child has the identical rule. In that case, swap the split-

ting rule of the parent with that of both children.

In executing the GROW, CHANGE and SWAP steps, we

restrict attention to available splitting rule assignments. By

available, we mean splitting rule assignments which do not

force the tree have an empty terminal node. We have also

found it useful to further restrict attention to splitting rule

assignments which yield trees with at least a small number

(such as �ve) observations at every terminal node.

The proposal above has some appealing features. To be-

gin with, it yields a reversible Markov chain because every

step from T to T
� must have a counterpart that can move

from T
� to T . Indeed, the GROW and PRUNE steps are

counterparts of one another, and the CHANGE and SWAP

steps are their own counterparts. Note that although other

reversible moves can be considered, we have ruled them out

because their counterparts are impractical to construct. For

example, we have ruled out pruning o� more than a pair of

terminal nodes because the reverse step would be complicated

and time consuming to generate.

Another appealing feature is that our MH algorithm is sim-

ple to compute. By using pRULE to assign splitting rules

in the GROW step, there is substantial cancelation between

p(T �) and q(T; T �) in the calculation of �(T i
; T

�) in (19). In

7

the PRUNE step similar cancelation occurs between p(T) and

q(T �
; T). In the CHANGE and SWAP steps, calculation of

the q values in (19) is avoided because their ratio is always 1.

5.2 Running the MH Algorithm for Stochas-

tic Search

The MH algorithm described in the previous section can be

used to search for desirable trees. To perform an e�ective

search it is necessary to understand its behavior as it moves

through the space of trees. By virtue of the fact that its

limiting distribution is P (T j Y;X), it will spend more time

visiting tree regions where P (T j Y;X) is large. However, our

experience in assorted problems (see Sections 6 and 7) has

been that the algorithm quickly gravitates towards such re-

gions and then stabilizes, moving locally in that region for

a long time. Evidently, this is a consequence of a proposal

distribution which makes local moves over a sharply peaked

multimodal posterior. Once a tree has reasonable �t, the

chain is unlikely to move away from a sharp local mode by

small steps. Because the algorithm is convergent, we know it

will eventually move from mode to mode and traverse the en-

tire space of trees. However, the long waiting times between

such moves and the large size of the space of trees make it

impractical to search e�ectively with long runs of the algo-

rithm. Although di�erent move types might be implemented,

we believe that any MH algorithm for CART models will have

di�culty moving between local modes.

To avoid wasting time waiting for mode to mode moves,

our search strategy has been to repeatedly restart the algo-

rithm. At each restart, the algorithm tends to move quickly

in a direction of higher posterior probability and eventually

stabilize around a local mode. At that point the algorithm

ceases to provide new information, and so we intervene in or-

der to �nd another local mode more quickly. Although the

algorithm can be restarted from any particular tree, we have

found it very productive to repeatedly restart at the trivial

single node tree. Such restarts have led to a wide variety

of di�erent trees, apparently due to large initial variation of

the algorithm. However, we have also found it productive to

restart the algorithm at other trees such as previously visited

intermediate trees or trees found by other heuristic methods.

For example, in Section 7 we show that restarting our algo-

rithm at trees found by bootstrap bumping (Tibshirani and

Knight 1996) leads to further improvements over the start

points.

5.3 Identifying the Good trees

As many trees are visited by each run of the algorithm, a

method is needed to identify those trees which are of most

interest. Because a long enough run of the chain is not feasi-

ble, frequencies of visits will not be useful. A natural choice

is to evaluate p(Y jX;T)p(T) for all visited trees and obtain

their relative probabilities. One could then choose the trees

with largest posterior probability. Alternatively, in the spirit

of model averaging (see Breiman (1996) and Oliver and Hand

(1995)), one could approximate the overall posterior mean by

the average of the visited trees using weights proportional to

p(Y jX;T)p(T).

However, there is a subtle problem with using posterior

probabilities to pick single trees in this context. Consider

the following simple example. Suppose we were considering

all possible trees with two terminal nodes and a single rule.

Suppose further that we had only two possible predictors, one

qualitative with two categories, the other quantitative with

100 possible split points. If the marginal likelihood p(Y jX;T)

was the same for all 101 rules, then the posterior would have a

sharp mode on the qualitative rule. This is because the prior

assigns small probability to each individual split value for the

quantitative x, and much larger probability to the single rule

on the qualitative x. The problem is that the relative sizes of

the posterior modes does not capture the fact that the total

posterior probability allocated to the quantitative predictor

trees is the same as that allocated to the single qualitative

tree.

It should be emphasized that the problem above is not a

failure of the Bayesian prior. By using it, the posterior prop-

erly allocates high probability to tree neighborhoods which

are collectively supported by the data. This serves to guide

the algorithm towards such regions. The problem is that rel-

ative sizes of posterior modes do not capture the relative al-

location of probability to such regions, and so can lead to

misleading comparisons of single trees. Note that this would

not be a limitation for model averaging.

A natural criterion for tree selection, which avoids the dif-

�culties described above, is to use the marginal likelihood

p(Y jX;T). As illustrated in Section 7, a useful tool in this

regard is a plot of the largest observed values of p(Y jX;T)

against the number of terminal nodes of T , an analogue of

the Cp plot (Mallows 1973). This allows the user to directly

gauge the value of adding additional nodes while removing

the in
uence of p(T). In the same spirit, we have also found

it useful to consider other commonly used tree selection cri-

teria such as residual sums of squares for regression trees and

misclassi�cation rates for classi�cation trees. (The misclas-

si�cation rate of a tree is the total number of observations

di�erent from the majority at each terminal node. When all

misclassi�cation costs are equal, it is an appropriate measure

of model quality).

6 A Simulated Example

In this section, we illustrate the features of running our search

algorithmby applying it to data simulated from the regression

tree used for illustration in Figure 2. The model represented

8

X1

Y

0 2 4 6 8 10

0
5

10

X2={A,B}

•

•
•

•

•

•

• •

•

•

•

•

•

•

• •
•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

••

•
•

•

••

•

•

•

•
•

•
•

•

••

•

•

••

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

••

•

•

•

•

•

•• •

•

•

•
•

•

•

•
••

•

•

•

•

••
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

••

•
•

•

•

•

•

•

• •
•

••

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•

• •

•

•

•

•

•

•

•

•
•

•

•

•

•

• •
•

•

•

• •
•

•• •

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

• •

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

••
• •
•

•

•

•

•

• •

•

•

•

•

• •

•
•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•
•

•

•
•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•• ••
•

•

•

•
•

•
•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•
••

•

X1

Y

0 2 4 6 8 10

0
5

10

X2={C,D}

•

••

•

•
•

•

•

• •

•

••

•

•

•

•

•

•

•

• •

•

•

•

••

•

•

••

•

•

•

•

•

•

•
•

••
•

•

•

•

•

•

•

•

•

•
•• •

•

•
•

•
•

• •

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

• •

•
••

•

••

•

•

•

•

•

•
• •

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•

•

•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•
•

•

•

•

••
•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•
••

•

•
•

•

•
• •

•
•

•

•
•

•

•
•

•

•

•

•

• •

•
•

•

•
•

•

••
•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•
•

•

•

••

•

••

•

•

•
•

•
•

•
•

•

•
•

••

•

•

•

•
•

•

•

•
•

•

•

•
•

Figure 4: Simulated example, with 800 observations and true

model overlaid.

by that tree is:

Y = f(X1; X2) + 2�; � � N (0; 1) (20)

where

f(X1; X2) =

8>>>><
>>>>:

8:0 if X1 � 5:0 and X2 2 fA;Bg
2:0 if X1 > 5:0 and X2 2 fA;Bg
1:0 if X1 � 3:0 and X2 2 fC;Dg
5:0 if 3:0 < X1 � 7:0 and X2 2 fC;Dg
8:0 if X1 > 7:0 and X2 2 fC;Dg

:

Figure 4 displays 800 iid observations drawn from this model.

One of the reasons we chose this particular model is that it

tends to elude identi�cation by the greedy algorithm which

chooses splits to minimize residual sums of squares. To see

why, consider Figure 5, which plots Y marginally against each

X. The horizontal lines on the plots are the mean levels for

the split chosen by the greedy algorithm. A �rst split on X1

at 5 gives greater separation of means than any split on X2.

The greedy algorithm is unable to capture the correct model

structure, instead making a �rst split on X1.

We begin by applying our approach to a sample of 200

observations generated from the model (20). We used the

tree prior P (T) with � = 0:95 and � = 1 for pSPLIT in

(7) (see Figure 3) and the uniform speci�cation for pRULE .

Using the mean-variance shift model (4) for the terminal node

distributions, we used the conjugate independence priors (12)

and (13) with hyperparameter values based on the sample.

The unconditional mean and variance of Y are �̂Y = 4:85

and �̂
2
Y

= 12 respectively. The residual variance from an

over�t greedy tree is roughly �̂
2

min = 4. We consequently

choose �i j �i � N (�̂Y ; �
2
i
(�̂2

Y
=�̂

2

min)) = N (4:85; 3�2
i
) and

�i � IG(� = 10; � = �̂
2

min
) = IG(10; 4) The prior on � is

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

• •

• •

•

••

•

•

•

•

•

•
•

•

•
•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

••

•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•
••

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

••

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

• •

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

• •

•

•
•

•

••

• •

• •

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

••
•

•

•
•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•
•

•
•• •

•

•

•

•
•

•
• • ••

•

•

•

• •
•

• •

•

•
•

•
•

••

•

•
•

•

•

•

••

•

•

•

•

•

• •

•

•

•
•

•

•

•
•

•

•
•

•

•

•

••
•

•

•

•

•

•

•

•

•

••
•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

• •
•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
••

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

• •
•

•
•

•

•
•

•

•

•••

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

• •

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

• •

•

•

•

•

•

••

•

••
•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•
•

•

•

•

•

•

•

•
•

•

••
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•
••

•

•

•

X1 (ordinal)

Y

2 4 6 8

0
5

10

X2 (unordered)

Y

A B C D

0
5

10

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

• •

••

•

••

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•
•

•
•
•

•

•

•

•
•

•

•

••

•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•
••

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

••

• •

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

••

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

• •

•

•

•

•

••

•

•
•

•

• •

••

• •

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•
•

•
•

••

•

•

•

•

•
•
•

•••

•

•

•

•
•

•
••••

•

•

•

••
•

• •

•

•
•

•
•

••

•

•
•

•

•

•

• •

•

•

•

•

•

••

•

•

•
•

•

•

•
•

•

•
•

•

•

•

••
•

•

•

•

•

•

•

•

•

• •
•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

••
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
• •

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

••

•

•

•

•

•

•

••
•

•
•

•

•
•

•

•

•••

•

•

•

•

•

•
•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

• •

•

•

• •

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

••

•

••
•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•
•

•

•

•

•

•

•

•
•

•

••
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•
••

•

•

•

Figure 5: The response against the two predictors. The mean

response for the best �rst split is given in X1 plot, and mean

levels for each X2 in the other plot.

informative but spread over the range of Y . The prior on �
2
i

has the unconditional variance in the tail and the minimum

variance near the mode.

To illustrate the behavior of the MH algorithm for this

setup, we report characteristics of trees we found using ten

runs of 1000 iterations, each time restarting from the single

node tree. The top panel of Figure 6 displays the log poste-

rior probabilities of the sequence of trees with a line drawn

at the log posterior probability of the true tree. The �gure

clearly illustrates the typical behavior described in the previ-

ous section; the algorithm quickly gravitates towards regions

of high posterior probability and then stabilizes, moving lo-

cally within that region. The middle panel of Figure 6 displays

the (marginal) log likelihoods with a line is drawn at the log

likelihood of the true tree. Note the variety of tree likelihoods

found by the di�erent restarts. One run, the third, seems to

be trapped in a region of trees having relatively low poste-

rior probabilities. The last two runs have led to trees with

the \optimal" likelihood. Note that single long run would

be much more likely to get stay trapped near a suboptimal

tree. Finally, the lower panel of the Figure 6 gives the corre-

sponding number of terminal nodes, with a line drawn at the

size of the true tree. The likelihood makes little distinction

between trees found in the last three runs, but the posterior

downweights the eight run as it is too large. Interestingly, the

dead end runs tend to �nd trees that are too large.

As Figure 6 shows, multiple restarts are a crucial part of

tree searches based on our algorithm. To further illustrate the

need for restarts and other features of our approach, we per-

form a Monte Carlo comparison of several strategies, based on

200 distinct samples of size 800 from (20). On each sample, we

9

Iteration Number

Lo
g

P
os

te
rio

r

0 2000 4000 6000 8000 10000

-1
80

-1
70

-1
60

-1
50

-1
40

-1
30

Iteration Number

Lo
g

In
te

gr
at

ed
 L

ik
el

ih
oo

d

0 2000 4000 6000 8000 10000

-1
70

-1
60

-1
50

-1
40

-1
30

-1
20

-1
10

Iteration Number

N
um

be
r

of
 B

ot
to

m
 N

od
es

0 2000 4000 6000 8000 10000

2
4

6
8

10

Figure 6: Log marginal likelihood and number of terminal nodes for trees visited by the Metropolis algorithm.

compare our recommended strategy of restarting versus the

strategy of using one long run. We also show what happens

to our strategy when the SWAP step is deleted, and when

the tree prior is relaxed. More precisely, on each of the 200

samples, 40,000 iterations of the following four strategies are

compared. Note that the last three strategies are identical to

the \base", except as noted:

Base: All four move types (GROW, PRUNE, CHANGE,

SWAP) with equal probabilities, 20 restarts, 2000 it-

erations after each restart, a tree prior pSPLIT with

� = :95; � = :5 (giving 6.5 expected terminal nodes).

No Restart: One long chain of 40,000 iterations.

No SWAP: The SWAP move is not used. The remaining

moves have equal probabilities.

Loose prior: The tree prior pSPLIT is changed to � =

:95; � = :25, giving 11.8 expected terminal nodes.

Each strategy is based on identical priors for � and � de-

scribed earlier in this section. Thus each strategy is using the

same marginal likelihood p(Y jX;T) as input.

The four approaches are compared in terms of the number

of iterations required to correctly identify the initial split-

ting rule of the tree, namely X2 2 fA;Bg vs. X2 2 fC;Dg.
Finding this split is crucial in this problem because the true

structure of the tree cannot be parsimoniously captured us-

ing a di�erent initial split. Figure 7 displays boxplots of the

number of iterations to correct identi�cation on each of the

200 samples for the four strategies. In cases where the method

failed to make a correct identi�cation in 40,000 iterations, the

value was recorded as 44,000.

Figure 7 shows the Base procedure performed best. The

strategy of using one long run was clearly worst, over 75% of

the chains failed to identify the correct split in 40,000 steps.

Omission of the SWAP step inhibits mixing, and slows the

chain considerably. The SWAP step is useful here because

when correct rule is �rst found at a lower level, the swap

allows that rule to be moved up. Lastly, in this particular

10

0
10

00
0

20
00

0
30

00
0

40
00

0

•••••
•••
•••
••
•

•

•

••••••••

•

••
••
••
•
•
•

•

base
(0.5%)

no restart
(75.5%)

no swap
(18.0%)

loose prior
(0.0%)

Figure 7: Number of iterations required to correctly identify

the root node rule for four versions of the Metropolis chain.

Runs for which the correct rule is not identi�ed are coded

44,000, and the percent of these failing runs is given in brack-

ets.

example, loosening up the prior has only a very slight e�ect.

Because of its similar stochastic nature, we were interested

in the comparative performance of bootstrap bumping (Tib-

shirani and Knight (1995)) on this data set. Bootstrap bump-

ing entails \varying the data" by bootstrap resampling, using

a greedy algorithm to �nd a tree for each bootstrap sample,

and then from these, picking the tree which performs best on

the original data. By introducing variation to the data, it is

hoped that the greedy method will get over local minima and

�nd a better model. However, it turns out that this is not the

case on this example. With 800 observations, the true tree

was not located once with 1000 resamplings, probably because

of the feature illustrated by Figure 5. Part of this di�culty

has to do with the large amount of data; when 200 observa-

tions are used, the correct tree is usually identi�ed within 100

resamplings. Interestingly, bootstrap bumping seems to work

better when there is less data.

Finally, it should be mentioned that we are not trying to

argue that our approach can defeat any competing algorithm.

Indeed, modi�ed greedy algorithms which look ahead by more

than one step would probably perform very well on this ex-

ample. Although it should be possible to create similarly

challenging examples for such algorithms, our purpose here

has been to simply to demonstrate how a stochastic search

Variable Code

Clump Thickness clump

Uniformity of Cell Size size

Uniformity of Cell Shape shape

Marginal Adhesion adhes

Single Epithelial Cell Size secs

Bare Nuclei bare

Bland Chromatin bland

Normal Nucleoli normal

Mitoses mitoses

Class: class (2=benign, 4=malignant)

Table 1: Variable names, breast cancer data

algorithm such as ours can avoid defeat by systematic struc-

ture.

7 The Breast Cancer Data

In this section, we illustrate the application of our procedure

to the breast cancer data used by Breiman (1996) and Tibshi-

rani and Knight (1995) to illustrate their bootstrap tree mod-

eling procedures. The data was obtained from the University

of California, Irvine repository of machine learning databases

(ftp://ftp.ics.uci.edu/pub/machine-learning-databases).

The data was given to the repository by William H. Wolberg,

University of Wisconsin Hospitals, Madison (see Wolberg and

Mangasarian, 1990). The data consists of nine cellular char-

acteristics which might be useful to predict whether a tumor

is benign or malignant (the binary variable class). All cel-

lular characteristics are ordered numeric variables, each with

levels 1; 2; : : : ; 10. The variable names are given in Table 1.

Of the original 699 observations, 683 complete observations

were used.

Correlations between predictors range from from 0.34 to

0.91 in absolute value, so many di�erent trees may describe

the data well. Ten-fold cross-validation applied to greedy

trees indicates that �ve to ten terminal nodes is a reason-

able tree size. Based on this three of the tree prior settings

in Figure 3 seemed reasonable. The values for pSPLIT were

� = :95, and � = 0:5; 1:0; 1:5. The induced priors on the

number of terminal nodes have means 7.0, 3.7, and 2.8, re-

spectively. Roughly, these correspond to large, medium, and

small trees. We also used the uniform speci�cation for pRULE.

Using the Bernoulli model (5) for the terminal node distribu-

tions, we put a uniform prior on the Bernoulli parameter.

To search for promising trees over the induced posterior, we

ran the MH algorithm 500 times with 5000 iterations per run.

Each run was restarted at the single node tree. For all three

priors, roughly the same size trees were visited. Although a

large number of restarts were used, even the �rst chain �nds

11

trees that beat greedy trees of the same size. As mentioned

in Section 5.3, we used both marginal likelihood and misclas-

si�cation rates to identify promising trees. The marginal log

likelihood of the data for identi�ed trees is given in Figure 8,

broken down by number of terminal nodes on the horizontal

axis. Figure 9 plots misclassi�cation rates in a similar fashion.

Although similar trees are identi�ed by all three runs, the

most likely trees are visited during the run with the medium

prior. Misclassi�cation rates of 11 observations out of 683

are attained with nine or more terminal nodes. This suggests

that a nine node tree may be su�cient. The likelihood prefers

a 10 node tree, and may provide more discrimination in this

example (since misclassi�cations are of the order of 10 in 683).

The trees found by our procedure had lower misclassi�cation

rates than greedy trees constructed using deviance pruning

with Splus. The greedy trees were substantially worse, yield-

ing misclassi�cation rates of 30, 29, and 21 for trees with 5,

6, and 7-10 terminal nodes.

For each of the three tree priors, we proceeded to consider

the best tree with 9, 10, and 11 terminal nodes, where best

means the tree with the largest likelihood and the lowest mis-

classi�cation rate. (Such best trees may not always exist).

This group included a variety of tree structures, both in terms

of topology and splitting rules. Several of these trees were

\bushy" like the tree displayed in Figure 1, and similar to

the trees selected by the greedy algorithm. In contrast, oth-

ers, like the one given in Figure 10, had a very unbalanced

appearance. It is interesting to note that this tree has a sur-

prisingly simple interpretation which can be summarized as:

if (clump>8.5) or (normal>8.5) or (size>4.5) or

(bare>6.5) then malignant

else benign, unless (2.5<bare<4.5) and

(clump>4.5)

This last condition seems at odds with the direction of all the

other rules; its removal would further simplify the classi�ca-

tion rule.

Although restarting from the single node tree produced

very satisfactory results, we also considered restarting from

trees found by bootstrap bumping. To construct these

bumped trees, 500 bootstrap samples of the original data were

generated. For each bootstrap sample, a greedy tree with 9

nodes (and at least 5 observations in each terminal node) was

grown. The 10 best trees (in terms of log likelihood) were used

as starting points for our algorithm. Starting at each of these

10 trees, 25 chains of length 1000 were run, amounting to one

tenth of the computational e�ort (10� 25 � 1000 = 250; 000

steps) spent on starting from null trees. Shorter runs were

used since the bumped trees already �t the data well.

Roughly 80% of the 250 chains visited trees with better

log likelihoods than the bootstrap trees from which they were

started. Trees with log likelihoods as high as -62.2 were iden-

ti�ed by this procedure. This represents a substantial im-

provement over the best of the 10 bumped trees, which had a

log likelihood of -67.3. Even shorter runs than those reported

here produced improvements on the bumped trees. Restarting

at bumped trees also yielded misclassi�cation rate improve-

ments. The best nine node trees identi�ed by bumping had

misclassi�cation rates of 15. From the bumped start points,

misclassi�cation rates as low as 13 were attained with eight

node trees. Although these improvements are not dramatic

(probably because the rates are so low to begin with), it is

interesting to note that even lower misclassi�cation rates were

found by restarting at the single node tree.

Finally, we also investigated the potential for model aver-

aging in this example. Speci�cally, we construct estimates

of malignancy probability for each individual by averaging

across trees using posterior model probabilities as weights.

All models with log posterior probability within 5.43 of the

most probable tree were used. This set consisted of 1152 dis-

tinct models. Weights ranged from 10�4 to 0.0225. Trees

averaged over had from four to eight terminal nodes, with the

majority having six or seven. Misclassi�cation rates of these

trees ranged from 13 to 33. The posterior averages agree well

with the data, having a misclassi�cation rate of 15. In this

example, there is little room for improvement, since the data

is �t well by many trees. Even so, it is likely that the averaged

tree would provide better out of sample prediction, being a

more stable average of many trees. This is a promising area

for future work.

8 Discussion

In this paper we put forward a Bayesian approach for �nd-

ing CART models. Identifying each CART model by the tree

T and the terminal node parameters �, prior speci�cation is

facilitated by considering P (T) and P (� j T) separately. We

have proposed specifying P (T) by a tree generating process

which randomly grows trees and assigns splitting rules. This

process can be easily speci�ed using simple defaults, or can be

made elaborate to allow for special structure. For the speci-

�cation of P (� j T), we have proposed a variety of conjugate

forms which allow for analytical marginalization of � from

the posterior. This marginalization substantially reduces the

computational burden of our overall approach.

For stochastic search of the posterior, we have proposed

a Metropolis-Hastings algorithm which moves around the

posterior by gravitating towards regions of high probability.

The key to our algorithm is a proposal distribution which

randomly selects one of four moves in tree space: GROW,

PRUNE, CHANGE or SWAP. With these moves our algo-

rithm is easy to compute and moves quickly to posterior

modes. Although the vast size of the CART model space

and the multimodal nature of the posterior prevent the simu-

lated Markov chain from converging, our experience indicates

that the algorithm does succeed in �nding at least some of

12

small tree prior

Number of Bottom Nodes

Lo
g

In
te

gr
at

ed
 L

ik
el

ih
oo

d

6 8 10 12 14

-7
5

-7
0

-6
5

-6
0

•
•••
•

•

•
•
• ••

•
••

•

••

•

••
•

•••

•
•

••
•

•

•

•
•

•••
•
•

•

•
•
•

•
•
•
•

•
•

•

•

•

•

•

•
•

•

••

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

••
•

••

•

••

•

•

•

•
•

••

••

••

•

•
•

•••

•
•

•

•

•

••

•

•
•

•

•

•

•
•

•

•
•
•

•

•
•

•

•
••
•

•
•

•

•

•
•

•

•

•

•

•
•

•
•••
•

•

•

•

•

•

•
•

•

•

•
•
•

•
•

•

•••
•
•

•••

••
•

•

•

•••
•

•

•

•

•

•

•
••

•••
•
•
••

•
•
•

••

•
•
•

•

•

•

•

•

•
•

•

•
•

•

••

•

•
•

•

•

••
•

•

•
•

•

•

•
••

•

•
•
•
•

•

•

••

•
•

•

•

•

•

••

•

•

•

•

•

•
•

•

•
••

••

•

•
•

••

•

••

••

•
•

•
•

••
••

•••

•

•
•

•

•
•
•

••
•

•

••

•
•

•
•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•
•

•

•
•••

••

•

•

•
••
•

•

•

••
•

•

•

•

••
•••

•••

•

•
••

•

•

•
•

•
•

•

•

•

•
•

•

•••

•

•

•
•

•
•

•

•

•

••

•

••

•
•••

•
•••

••
•

•••

••
•

•

••

•

•

•

•
•

•
•

•
•

•

•
•
•

•
••

•

•

•

•
•

•

•

•

••

•
••

•
•

•

•

•
••

•
•

•

•

•
••

••

•

••

•

•

•

•

•

••
•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

••

•

•

•

•

••

•

•

•

•

•
•
•

•

•

••

•
•

•

•

•

•

•

••

••

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

••
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•

•

•

•
••

•••

••

•

•

•

•

••

•

•

•

•

••

•

•

•

•

••

•

•

•

•

•

•
••

•

••

•

••

•

•

•

•
•

•

•
•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•
•

•

•••

•

•

•

•

•
•
•

•
•
•

•

•

•

•

•

••
•
•

•
••

•

•

••

•

•
•

medium tree prior

Number of Bottom Nodes

Lo
g

In
te

gr
at

ed
 L

ik
el

ih
oo

d

6 8 10 12 14
-7

5
-7

0
-6

5
-6

0

•
•

•

•••

•
•

•
•

•

•••••

•
••

•
•
••

•

•
•

•••
••

•

••

••••
••

••

••

••
••

•

•
•

•••

••
••

•

•

••

•

••

•
••

•
•

•

•

••

•

••

•

••

•

•
••

•

•

•
•

•
•

•

••

•

••

•

•

•

•
•

••

•

•
•

•

•

•

•

••

•

•

•

•

••

•

•

•

•
••

•

••••

•
•

•
•

•

•

•
•••
•

•

•

•

•

•

•

•
•
•

•

•

•
•

•
•

•

•

••

•

•

•

•

•••

••

•

••
•

•
•

••
•

••

••

•

•

•

••
••

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
••
•

•

•

•
•

••
•
••
•

•

•

•

••

•

•

••
•

•

•

•
•

•

•

••

•

••

•

••

••

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•
••
•

•

•••

•
•

•
••

•
•

•

••
•

•

•

•
•

•
•
•

•

•
•
•
•

•

••

•

•

•

••

••
•

•

•

•
•

•

•

••

•

•

•

•

•

••
•

•

•
•

•
•

•

••
•
•

•
•

•

•

•

•

••

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••

•

••

•

•
•

•

•

•

•
•

•

•
•

•

••

••

•

•

•
•
••
•

•

••

•
•

•
•

•

••

•

•

•

•
•

•
•

•

•

•

•

•

•
•

••
•

•

•

•

•

•

••

•

••

•

•

•
•

•

•
•

•

•

•

•
•

••

•

••

••

••

•

•

•

•

•

•

•

•
•
•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

•

•

••

••

•
•

•

•

•
•

•

•

•

•

•

•
•
•

•

••

•

••
•
•

•

•

•
•

•

•

•

•
•

•

••

••

••

•
•

•

•
•

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

••

•

•

••

•

•
•

•

•••

•

•

•
•
••

••

•
•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•
•
•

•

•

•
•

•

•

•

•

•
•

•

•

•

••

•

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•
•
•
•

•

•

••

••

•

•
•

•

•

•

•

• •

•

•

•

large tree prior

Number of Bottom Nodes

Lo
g

In
te

gr
at

ed
 L

ik
el

ih
oo

d

6 8 10 12 14

-7
5

-7
0

-6
5

-6
0

••
•

•
•

••
•
•
•

•
•

•
••
•

•

•
•
•

•

•

•
•

•

•

•
••
•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•
••

••
••
•

•

•

••

•
••
•

•

•

•

•

•
•

•

•

•
•
•
••

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•
•
•

•

•••

•

•

•

•

•

•

•
•
•

•
••

•

•

•

••

•

•

•
•
••

•

•
•

•

•

•

••
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

••
••

•

•

•
••

•

•

••
•

•
•

•
•
•

•

•

•

•

•
•

•

•

•

•

•

•
•

••

••

•

•

•

•
•

•

••

•

•

•

•

•••
•

••
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•

•

••

•

••

•

•

•

•

•
••

•

•

••

•
•

•

••
•

•
•

•

•

•

••

•

•

•
•

•

•
•

•

••

•
•
•

••
•
•
•
•

•

•

•

•
••

••

•

•

•

••
•

•

•

•

•

•
•

•

•

•

•
••

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

••

•
•

•

••
•

•

••

•

••

•

•
•

•

•

•

•

•

•

••

•

•

•

••

•
•

•

•
•

•

•

•

•

••
•

•
••
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

••

•
•

•

•

•

•

•

•
•
•
•

•
•

•

•
•••

•

•

•

•

•
•

••

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•
•

•

•

•

•

•

•

•

•
••
•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•
••
•

•

•

•

•

Figure 8: Log marginal likelihood against tree size.

the high posterior regions. To take advantage of this behav-

ior, we have found it fruitful to repeatedly restart the search

after a local mode has been found. The examples in Sections

6 and 7 illustrate that our approach is capable of �nding a set

of (possibly quite di�erent) trees that �t the data well, and

can outperform those trees of similar size found by alternative

methods.

Finally, it may be of interest to compare our approach with

the independent development of Denison et.al. (1997). Al-

though the basic thrusts are similar, there are key di�erences.

To begin with, we use a tree generating process prior which

can depend on both tree size and shape, whereas they use a

simple truncated Poisson prior which puts equal weight on

equal sized trees. For splitting value assignment for quan-

titative predictors, we recommend a discrete uniform prior

on the observed predictor values, an invariant prior, whereas

they recommend a continuous uniform on the predictor range,

which is not invariant. For regression tree parameters, we

use proper conjugate priors and then margin out analyti-

cally, whereas they use improper priors, plug-in parameter

estimates, and do not completely margin.

For stochastic search, we both use Metropolis-Hastings

algorithms with the same GROW, PRUNE and CHANGE

steps. However, we include an additional SWAP step. (In

an early version of this paper, our CHANGE step was more

limited. However, we enhanced it after seeing an early ver-

sion of their paper). To cope with their continuous splitting

values priors, they recommend an elaborate reversible jump

algorithm (Green 1995) which requires an additional rejection

step. Finally, they recommend stochastic search using a sin-

gle long run preceded by a burn-in period, \after which poste-

rior probabilities have been settled for some time". In sharp

contrast, we have strongly cautioned against such a strategy,

because even with our additional SWAP step, the algorithm

quickly gets trapped in a local posterior mode after which it

only moves locally, (see Section 6). Our recommended strat-

egy of continual restarts is deliberately designed to avoid this

problem.

References

Breiman, L., Friedman, J. Olshen, R. and Stone, C. (1984),

Classi�cation and Regression Trees, Wadsworth.

Breiman, L (1996), \Bagging Predictors", Machine Learn-

ing, 24, 123{140.

Buntine, W. (1992), \Learning Classi�cation Trees", Statis-

tics and Computing, 2, 63{73.

Clark, L., and Pregibon, D. (1992), \Tree-Based Models" in

Statistical models in S, J. Chambers and T. Hastie, Eds.,

Wadsworth.

Chipman, H., George, E.I. & McCulloch, R.E. (1997) \Hi-

erarchical Bayesian CART", Technical Report, Depart-

ment of MSIS, University of Texas at Austin.

Denison, D., Mallick, B. and Smith, A.F.M. (1997) \A

Bayesian CART Algorithm", Technical Report, Depart-

ment of Mathematics, Imperial College, London.

George, E.I. (1998), \Bayesian Model Selection", Encyclope-

dia of Statistical Sciences Update, Volume 3, Wiley, New

York.

Green, P. (1995), \Reversible Jump Markov chain Monte

Carlo Computation and Bayesian Model Determina-

tion",Biometrika, 82, 711-32.

13

small tree prior

Number of bottom nodes

M
is

cl
as

si
fic

at
io

n
ra

te

6 8 10 12 14

0
10

20
30

40

•

•
• •

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•

•
•

•

•
•
•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•

•
•

•
•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

•
•
•
•

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•

medium tree prior

Number of bottom nodes

M
is

cl
as

si
fic

at
io

n
ra

te

6 8 10 12 14
0

10
20

30
40

•

•
•
•

•
•

•
•

•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•
•
•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

large tree prior

Number of bottom nodes

M
is

cl
as

si
fic

at
io

n
ra

te

6 8 10 12 14

0
10

20
30

40

•

•
•

•

•

•
•
•
•
•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

Figure 9: Misclassi�cation rate against tree size.

Jordan, M.I. and Jacobs, R.A. (1994), \ Mixtures of Experts

and the EM Algorithm", Neural Computation, 6, 181-

214.

Mallows, C. L. (1973), \Some Comments on Cp." Techno-

metrics, 15, 661{676.

Oliver, J.J. and Hand, D.J. (1995). \On Pruning and Aver-

aging Decision Trees", Proceedings of the International

Machine Learning Conference, 430-437.

Paass, G. and Kindermann, J. (1997). \Describing the Un-

certainty of Bayesian Predictions by Using Ensembles

of Models and its Application", 1997 Real World Com-

puting Symposium, Real World Computing Partnership,

Tsukuba Research Center, Tsukuba, Japan, p. 118{125.

Quinlan, J.R. and Rivest, R.L. (1989). \Inferring decision

trees using the minimum description length principle",

Information and Computation, 80:227-248.

Sutton, C. (1991), \Improving Classi�cation Trees with Sim-

ulated Annealing", Proceedings of the 23rd Symposium

on the Interface, E. Keramidas, Ed., Interface Founda-

tion of North America.

Tibshirani, R., and Knight, K. (1995), \Model Search

and Inference by Bootstrap `Bumping' ", University of

Toronto technical report.

Tierney, L. (1994), \Markov Chains for Exploring Posterior

Distributions," Annals of Statistics, 22, 1701{1762.

Wallace, C.C. and Patrick, J.D. (1993). \Coding decision

trees", Machine Learning, 11, 7-22.

Wolberg, W. H. and Mangasarian, O. L. (1990), \Multisur-

face method of pattern separation for medical diagnosis

applied to breast cytology", Proceedings of the National

Academy of Sciences, 87, 9193-9196.

14

clump<8.5
clump>8.5

239 / 683

B

normal<8.5
normal>8.5

156 / 600

B

size<4.5
size>4.5

105 / 549

B

bare<6.5
bare>6.5

34 / 475

B

bare<2.5
bare>2.5

12 / 449

B

secs<4.5
secs>4.5

3 / 411

B

0 / 402

B

3 / 9

B

bare<4.5
bare>4.5

9 / 38

B

clump<4.5
clump>4.5

7 / 26

B

0 / 18

B

1 / 8

M

2 / 12

B

4 / 26

M

3 / 74

M

0 / 51

M

0 / 83

M

Figure 10: A nine node tree found by by stochastic search. The overall misclassi�cation rate is 13, and log marginal likelihood

-63.4.

15

