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This paper describes and compares various hierarchical mixture prior formulations of vari-
able selection uncertainty in normal linear regression models. These include the nonconjugate
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1 Introduction

In the context of building a multiple regression model, we consider the following canonical variable

selection problem. Given a dependent variable Y and a set of p potential regressors Xi,..., X,
the problem is to find the “best” model of the form Y = X757 + ... X7 5] + € where X7, ..., X7

is a “selected” subset of Xy,..., X,,.

A Bayes procedure for identifying “promising” subsets of predictors was proposed by George
and McCulloch (1993). This procedure, called SSVS (Stochastic Search Variable Selection), entails
the specification of a hierarchical Bayes mixture prior which uses the data to assign larger posterior
probability to the more promising models. To avoid the overwhelming burden of calculating the
posterior probabilities of all 2P models, SSVS uses the Gibbs sampler to simulate a sample from
the posterior distribution. Because high probability models are more likely to appear quickly,
the Gibbs sampler can sometimes identify such models with relatively short runs. Effectively, the
Gibbs sampler is used to search for promising models rather than compute the entire posterior.
The key to the potential of SSVS is the fast and efficient simulation of the Gibbs sampler.

In this paper we describe, compare, and apply a variety of approaches to Bayesian variable
selection which include SSVS as a special case. These approaches all use hierarchical mixture
priors to describe the uncertainty present in variable selection problems. Hyperparameter settings
which base selection on practical significance, and the implications of using mixtures with point
priors are discussed. Conjugate versions of these priors are shown to yield posterior expressions
which can sometimes be sequentially computed using efficient updating schemes. When p is
moderate (less than about 25), performing such sequential updating in a Gray Code order yields
a feasible approach for exhaustive evaluation of all 2P posterior probabilities. For larger values of
p, Markov chain Monte Carlo (MCMC) methods, such as the Gibbs sampler or the Metropolis-
Hastings algorithms, can exploit such updating schemes to rapidly search for high probability
models. Estimation of normalization constants is seen to provide improved posterior estimates
of individual model probabilities and the total visited probability. Nonconjugate and conjugate
MCMC implementations are compared on three simulated sample problems.

Bayesian variable selection has been the subject of substantial research in recent years. Some
of the papers which propose procedures related to those discussed here include Carlin and Chib

(1993), Chipman (1995), Clyde and Parmigiani (1994), Clyde, DeSimone, and Parmigiani (1996),



George and McCulloch (1993, 1995), George, McCulloch and Tsay (1995), Geweke (1996), Hoet-
ing, Raftery and Madigan (1995), Kuo and Mallick (1994), Meehan, Dempster and Brown (1994),
Mitchell and Beauchamp (1988), Phillips and Smith (1995), Raftery, Madigan, and Hoeting
(1993), Raftery, Madigan, and Volinsky (1995), and Smith and Kohn (1996), and Wakefield
and Bennett (1996).

This paper is structured as follows. Section 2 describes a general hierarchical Bayes mixture
formulation for variable selection. Section 3 treats nonconjugate implementations of this formu-
lation which include SSVS. Section 4 treats conjugate implementations of the this formulation
which allow for substantial analytical simplification and fast algorithms for posterior evaluation
and exploration. Section 5 presents performance assessments of three basic MCMC implementa-
tions. Finally, Section 6 presents a real application to the construction of financial index tracking

portfolios.

2 A Hierarchical Mixture Model for Variable Selection

We begin by describing a general hierarchical mixture model which forms the basis for the various
methods considered in this paper. First of all, the standard normal linear model is used to describe
the relationship between the observed dependent variable and the set of all potential predictors
X1,...,Xp, namely
F(Y | B,0) = Nu(XB,0°1) (1)
where YV is n x 1, X = [X},... X,] is an n X p matrix, § is a p x 1 vector of unknown regression
coefficients, and ¢ is an unknown positive scalar.
The variable selection problem arises when there is some unknown subset of the predictors
with regression coefficients so small that it would be preferable to ignore them. Throughout this

paper, we index each of these possible 2P subset choices by the vector

Y= (’Yla"' a’)/p)la

where ; = 0 or 1 if §; is small or large, respectively. The size of the «th subset is denoted
¢y = 7'1l. Since the appropriate value of 7y is unknown, we model the uncertainty underlying
variable selection by a mixture prior w(3,0,v) = w(3|0,v)m(o|v)w(y) which can be conditionally

specified as follows.



The «vth subset model is described by modeling § as a realization from a multivariate normal
prior

W(ﬁ | g, 7) = Np(ov T(O’,’Y)) (2)

where the ith diagonal element of T(, ) is appropriately set to be small or large according to
whether v; = 0 or 1, respectively. The choice of form for, and specification of, T(, ) determines
the essential properties of the hierarchical prior. The consequences for variable selection of this
choice are the main focus of subsequent sections of this paper.

The residual variance o2 for the yth model is conveniently modeled as a realization from an
inverse gamma prior

m(o? |v) =1G(v/2, vA,/2) (3)

which is equivalent to v\, /0? ~ x2. Although setting A\, constant has led to reasonable results in
our experience, it might be desirable have )\, decrease with the size of the selected subset, ¢,. For
specification purposes, A\, may be thought of as a prior estimate of 02, and v may be thought of
as the prior sample size associated with this estimate. In the absence of prior information about
0?2, we recommend choosing Ay = 3%5, where 3%5 is the classical least squares estimate of o2
based on a saturated model, and then choosing v so that 7(o? | ) assigns substantial probability
to the interval (s? 5, s2-), where s3- is the sample variance of Y.

Although + itself can be modeled as a realization from any (nontrivial) prior 7(7y) on the 27

possible values of «y, priors of the form

r(9) = [Twl (1 = w1, (@)

such as 7(y) = 1/2P, are easy to specify, substantially reduce computational requirements, and
often yield sensible results. We interpret 7(y; = 1) =1 — w(y; = 0) = w; as the prior probability
that G; is large enough to justify including X; in the model. The prior (4) can also be used to put
increased weight on parsimonious models by setting the w; small. Under (4), the components of
v are apriori independent. Treatments of alternative priors with dependent components for this
setup have been considered by Chipman (1995) and Geweke (1996).

For this hierarchical setup, the marginal posterior distribution 7(y | Y') contains the relevant
information for variable selection. Based on the data Y, the posterior 7(y | Y') updates the prior

probabilities on each of the 2P possible values of . Identifying each v with a submodel via



(7i = 1) & (X; is included), those vy with higher posterior probability 7(y |Y’) identify the more
“promising” submodels, that is those supported most by the data and the prior distribution.
The practical value of this hierarchical Bayes formulation for Bayesian variable selection de-
pends on two key issues. First, the hyperparameters of the prior, especially T, ,), must be chosen
so that, based on the data, the posterior (| Y') will assign higher probability to the predictor
subsets of ultimate interest. Secondly, it is necessary to be able to compute 7 (y|Y") at least to the
extent where high probability values of v can be identified. In the following sections we address

both of these issues for various hyperparameter settings.

3 Nonconjugate Hierarchical Setups

In this section, we consider the special case of the Section 2 model where Y, in (2) is of the

form

m(Blo,y) =n(B8|v) = Np(0,DyRyDs) (5)
where D, is a diagonal matrix and and R, is a correlation matrix. Although any covariance matrix
can be written in the form D, R,D,, this parametrization is useful for specification purposes. We
denote the ¢th diagonal element of D?y by

Vo when v, =0

(D3)ii = (6)

Uly,, when ~; =1
where v = (71, -+, Yi=1, Vit 1, - - -, ¥p)- Note that Voy;, and iy, can depend on the entire subset
specified by . The SSVS procedure of George and McCulloch (1993, 1995) is based on the special
case where Voy ;) = Vi and Uly,, = V1; are constant for all V(i and R, = R does not depend on
.
The joint distribution of 8 and o given 7 is not of the conjugate form because (5) does not
depend on o. Indeed, 8 and o are here independent given . Throughout the paper we refer to

the prior (3, 0,7) using (5) as “the nonconjugate prior”.



3.1 Nonconjugate Hyperparameter Settings

Under (5), each component of 3 is modeled as having come from a scale mixture of two normal

distributions which, conditionally on v(;), may be represented by

m(Bilv)=(1- 'Yi)N(OvUO’Y(i)) + 'YiN(OvUI’Y(i))- (7)

To use this hierarchical mixture setup for variable selection, the hyperparameters Vo and Uy
are set “small and large” respectively, so that N (0, vgy(i)) is concentrated and N (0, Ul%‘)) is diffuse
as in Figure 1 below. The general idea is that when the data supports v; = 0 over ; = 1, then §;
is probably small enough so that X; will not be needed in the model.

Several strategies may be considered for choosing voy ;) and vi,, . To begin with, such a choice
can be based on considerations of “practical significance”, as follows. Suppose a value d;, > 0
could be chosen such that if |3;| < d;y in the yth model, it would be preferable to exclude X;.
Such a 6;y could be considered the “threshold of practical significance”. A simple choice, which
does not depend on v, might be §;; = §; = AY/AX;, where AY is the size of an insignificant
change in Y, and AXj is the size of the maximum feasible change in X;. Alternatively, to account
for the cumulative effect of changes of other X’s in the model, one might use the smaller choice
diy = AY/(¢yAX5).

As described in George and McCulloch (1993, 1995), when such §;, can be chosen, higher
posterior weighting of those v values for which |B;| > 0;, when 7; = 1, can be achieved by
choosing vy, and vy, such that the pdf 7(8; | v), 7 = 0) = N(0,voy;,) is larger than the pdf
m(Bi | V@), ¥ = 1) = N(0,v14,) precisely on the interval (—d;y,d;y), see Figure 1. This property

is obtained by any Vv and Uy satisfying

log(vlfy(i) /UO’Y(i) )/(U[]_fyl(i) - Ul_fyl(i)) = 6227 (8)

We recommend choosing such Vo and Uly, SO that the N (O,Ulm)) distribution is consistent
with prior beliefs about plausible values of 8; under . However, as described in Section 3.2,
computational problems can arise when vy, /’U(yy(i) is set too large. In our experience, such
computational problems will be avoided whenever vy, / Voy;, < 10000, thus allowing for a wide
variety of settings.

Incorporation of a threshold of practical significance above requires choosing Voy;, > 0 for

all i. In doing so, the distribution (5) will be p-dimensional for all 4. In this case, the prior



distribution is allowing for the possibility that submodels are only approximations to the“true”
model. This would be appropriate for the common data analysis situation where linear models
are used to approximate more complicated relationships between the variables.

When a threshold of practical significance d;, cannot be meaningfully specified, one might
instead consider setting vo,, = 0 and setting vi,,, to be consistent with reasonable values of
Bi, a nonconjugate variable selection setup considered by Geweke (1996). Under this setting, (7)

becomes
Tr(/ﬁl | ’)I) = (1 - ’Yl)IU + ’YZN(Oa UI’Y(i))a (9)

where Ij is a point mass at 0. For this choice, d;y = 0, corresponding to the preference that any
Bi; # 0 be included in the model. This criterion will select (; on the basis of how well they can
be distinguished from 0 rather than their absolute size. Indeed, when Voy;, =0 and (; # 0, the
marginal Bayes factor 7(y; =1|Y)/n(y; = 0|Y) will be large with increasing probability as the
amount of data increases. Thus, any nonzero (3;, no matter how small, will be included in the
model with enough data.

Note that when vgy,; = 0, 7(8|v) in (5) will be a singular g,-dimensional distribution. A
useful alternative representation in this case, is 7(3 | v) = 7(8, | v)7 (85 | v) where 3, and (5 are

subvectors of  such that

W(ﬁfy | ’}/) = ]\/vq,Y (0,D17R17D17) and 71'( y = 0 | ’y) =1. (10)

In addition to voy, and viy,, the specification of 7(3|~) in (5) requires the choice of a prior
correlation matrix R,. For the simple choice R, = I, the components of 3 are apriori independent.
Other natural choices which replicate the correlation structure of the least squares estimates are
R, x (X'X)™! for Voyg, > 0 and Ry o (X)X,)"! for Vo, = 0 where X, is the n x ¢, matrix

whose columns correspond to the components of 3,.

3.2 Nonconjugate MCMC Exploration of the Posterior

Although analytical simplification of 7 (3, 0,v|Y) is intractable under the nonconjugate hierarchi-
cal setup, MCMC (Markov chain Monte Carlo) methods such as the Gibbs sampler or Metropolis-
Hastings algorithms (see Smith and Roberts (1993) for an overview and references) can be used

to explore the posterior w(y | Y). Applied to the complete posterior 7(3, 0,7 |Y), such methods



simulate a Markov chain

A (12)

thus converges to v ~ (v | Y).

In problems where the number of potential predictors p is small, the sequence (12) can be
used to evaluate the entire posterior 7(y | Y). In large problems, where thorough evaluation is
not feasible, the sequence (12) may still provide useful information. In many cases, the y values
of interest, namely those with high probability, will appear most frequently and quickly, making
them easier to identify. Even when the length of the sequence (12) is much smaller than 27, it
may thus be possible to identify at least some of the high probability values. In such situations,
In such situations, MCMC methods can at least be used to search for high probability v values.

The SSVS procedure of George and McCulloch (1993) is based on using the Gibbs sampler
to simulate the full parameter sequence (11) when Voyy, > 0. This simply entails successive

simulation from the full conditionals

(B o7, Y)
(o |B,7,Y) =n(o|B,Y) (13)
7T(’Yl | /870-77(2)7}/) = 71'(')/2 |/87’Y(Z))7 1=1,...,p

where at each step, these distributions are conditioned on the most recently generated param-
eter values. These conditionals are standard distributions which can be simulated quickly and

efficiently by routine methods. The most costly step in simulating (13) is the generation of 5 from
(B lo,7,Y) = Np((X,X + UQ(D'yR'yDv)_l)_IX,Ya 02(X,X + (D'vaD'y)_l)_l)a (14)

which requires recomputing (X'X + 0?(DyR,D,)"1)~! on the basis of new values of o2 and 7.

This can be done quickly and efficiently by using the Cholesky decomposition (see Thisted 1988).

We note that as a result of this step, O(p?) operations are required to generate each value of 7.
When vy, = 0, the Gibbs sampler implementation (13) cannot be used to simulate (11)

because simulation schemes such as (13) generate reducible, and hence nonconvergent, Markov



chains. Effectively, the Gibbs sampler gets stuck when it it generates a value 3; = 0. To avoid this
problem, Geweke (1996) proposed an alternative implementation which jointly draws (v;, 3;) one
at a time given o and the other (v;, 3;) pairs. This implementation might also be preferable for
the case Voygy > 0 with Vlyg / Vo chosen extremely large, which leads to very slow convergence
of the Markov chain generated by (13). In this case, the Geweke (1996) alternative seems to
offer improved convergence rates at the expense of computational speed. Carlin and Chib (1995),
Green (1995) and Phillips and Smith (1996) have proposed alternative, computationally intensive

MCMC methods which may also be used to simulate (11) for the case voy,, = 0.

4 Conjugate Hierarchical Setups

In this section, we consider the special case of the Section 2 model when T, ) in (2) is of the
form

w(B|0,7) = Np(0,0°DyR, D), (15)

where analogously to (6), D3 is diagonal and R, is a correlation matrix. We denote the ith

diagonal element of D:’;Q by

U[’jm) when 7; =0

(D2?)ii = (16)

vf,m) when ;=1
Because the conditional distribution of § and o given -y is conjugate for (1), we refer to the
resulting hierarchical mixture prior as “the conjugate prior”. As opposed to the nonconjugate
prior of the last section, S and o can here be eliminated by routine integration from the full
posterior 7(3,0,7 | Y). As will be seen in subsequent sections, this feature yields attractive

computational methods for posterior evaluation and exploration.

4.1 Conjugate Hyperparameter Settings

Under the prior (15), each component of 3 is again modeled as having come from a scale mixture
of normals

(i 0,7) = (L= 7%)N(0, 005y, ) + %N (0,0%07, ). (17)
As with the nonconjugate prior, the idea is that /UE;’Y(i) and vi‘m) are to be set “small and large”

respectively, so that when the data supports v; = 0 over ; = 1, then (; is probably small



enough so that X; will not be needed in the model. However, the way in which vg, 0 and vi, o
determine “small and large” is affected by the unknown value of o, thereby making specification
more difficult than in the nonconjugate case.

If 0 were known, the nonconjugate and conjugate priors would be simple reparametrizations
of each other according to Vo) = 0206‘7@ and Ul = 0201‘7(“. Thus, if a reasonable estimate &2
of 02 were available, perhaps a least squares estimate based on the data, the practical significance
strategy from Section 3.1 could be used to first select Vo and Vlygys and then U())k,y(i) and UTW)
could be obtained from

~2 ~9
USV(i) = V0y(;, /0” and Ufm) = Vly,y /07 (18)

Of course, no matter how U())k,y(i) and v, @ are chosen, the conjugate and nonconjugate priors

are different. Indeed, in the conjugate case, the marginal distribution of 3; given + is

Tr(ﬂl | ’Y) = (1 - ’Yl)T(Vv 07 >‘7U57(i)) + ’yiT(Va 07 AVUTfy(i) ) (19)

*

where T'(v,0, \yv?, ) is the t distribution with v degrees of freedom and scale parameter Avvﬂ(i).

JVG)
For a chosen threshold of practical significance d;y, the pdf 7(8; | vy, v = 0) = T'(v,0, >\7U87(i)) is
larger than the pdf 7(8; [ vy, = 1) = T(v,0, )\7@1‘7(“) precisely on the interval (—d;, d;y), when

U0y, and viy,, satisfy

(080 01"/ = [0, + 02, A [0, + 0%, /()] (20)

Although one could choose Uém) and vy, o to satisfy (20), the strategy described in the previous
paragraph provides a simple, good approximation. Presumably A, would be set equal to the prior
estimate 62, since as v gets large, the priors (17) and (19) become similar when \, = 0.

A special case which has received substantial attention in the literature (see, for example,
Clyde, DeSimone and Parmigiani (1996), Raftery, Madigan and Hoeting (1993) and Smith and

Kohn (1996)), is the conjugate formulation (15) with Uém) =0 and vi‘v(i) chosen to be consistent

with reasonable values of 3;. Under this choice (19) becomes
m(Bi | 0,7)) = (L =) lo + %T (v, 0, vy, ), (21)

where [ is a point mass at 0. Just as for the nonconjugate case (9), the threshold of practical

significance is 0;, = 0, corresponding to the preference that any 3; # 0 be included in the model.



Again, this criterion will select §; on the basis of how well they can be distinguished from 0
rather than their absolute size. As in (10) for the nonconjugate case, it may also be convenient to
represent the conditional prior (15) as w(8|v) = 7(8, |v)7(B5|7y) where (5, and 35 are subvectors
of 8 such that

7(8, |7) = Ny, (0,6°Di, Ry, Df,) and 7(B; = 0] 7) = L. (22)

Another potentially valuable specification of the conjugate formulation can be used to address
the problem of outlier detection, which can be framed as a variable selection problem by including
indicator variables for the observations as potential predictors. For such indicator variables,
the choice 087(1-) =1 and Ui‘m) = K > 0 yields the well-known additive outlier formulation,
see, for example, Petit and Smith (1985). Furthermore, when used in combination with the
previous settings for ordinary predictors, the conjugate prior provides a hierarchical formulation
for simultaneous variable selection and outlier detection. This has also been considered by Smith
and Kohn (1996). A related treatment has been considered by Hoeting, Raftery, and Madigan
(1995).

Finally, the choice of a prior correlation matrix R, for the conjugate prior entails the same
considerations as in the nonconjugate case. Again, appealing choices are R, = I, R, o (X'X )t

for vg, , >0 and Ryy o (X[ X,)~! for Vg = 0-

4.2 Eliminating 3 and o from 7(3,0,7|Y)

The principal advantage of using the conjugate hierarchical prior is that it enables analytical
margining out of # and o from (8,0, |Y) = f(Y | B,0)n(B | 0,7)n(0)n(y). We consider the
two cases U())k,y(i) > 0 and vf’jm) = 0 separately.

When vg, > 0, combining the likelihood from (1) with the priors (3) and (15) yields the

joint posterior
w(B,0,7|Y) o o~ PN DL R, DY Pexp{— 5 |V — X 6] fexp{—g2 }7(7)

where
Y . X

and X = : (23)
0 (D§R7D§)_1/2

~h
I

10



Integrating out 0 and o yields
(v Y) o g(v) = |X'X|7V2IDLR, D572 (wA + §5) 7 () (24)

where
S2=Y'Y -YV'X(X'X)'X'V =YY -YV'X(X'X + (D;R,D}) ") ' X'Y. (25)
When v(’jv(i) = 0, combining the likelihood from (1) with the priors (3) and (22) yields the

joint posterior
n(B,0,7|Y) oc o ("t ADIDE Ry, DY [ P exp{— g [V — X, 8y exp{— 525} (v)

where

- Y - Xy
Y = and X, = , (26)
0 (DT7R17DT7)71/2
and 3, and X, are defined at the end of Section 3.1. Integrating out 3, and o yields

(v |Y) oc g(v) = | X5 X, 72DE, Riy DY |72 (A + 85) )P () (27)

where

S2=Y'Y -YV'X, (X, X,)"' XY =YY -Y'X, (XX, + (D}, R, D},) ") "' X} Y. (28)

Note that g(vy) in (24) and (27) only gives 7(y |Y) up to a normalization constant. To
obtain this constant exactly would require evaluation of the sum of g(y) over all possible 7 values.
However, as will be seen in Section 4.5 below, this normalization constant can be estimated by

sampling from the posterior.

4.3 Some Fast Updating Schemes
When either
US,Y(I_) >0and Ry =1, (29)
or
Uy, = 0 and D}, Ri, DY, = ¢ (X} X,) 7, (30)

the value of g(y) can be rapidly updated as «y is changed one component at a time. As will be
seen in Sections 4.4 and 4.5, these rapid updating schemes can be used to speed up algorithms

for evaluating and exploring the posterior 7(y|Y).

11



When condition (29) holds, fast updating of g(7) can be obtained from the Chambers (1971)

regression updating algorithm. This is based on the representation of g(7) in (24) and (25) as
H i, VT DT R YTY — WY () 1)

where T'T = X'X for T upper triangular and W = 7'~ X'Y. T may be obtained by the Cholesky
decompos1t10n The representation (31) follows by noting that |X'X|~"/2 = |T'T|~'/? = |T|~' =
DT (DYRDYYE = (D2 = (L[ — 30, + W0, )72 when R, = I, and
Y X(X X)"'X'Y = Y'X(T'T) "' X'Y = W'W. Chambers (1971) provides an algorithm for fast
updating of T and W when a row is added or deleted from (X,Y). However, it is straightforward
to see that updating (X'X, X'Y), and hence (T, W), based only on changing one component of ~,
corresponds to having a row added to or deleted from (X,Y) in (23). Thus, the Chambers (1971)
algorithm may be used to update (31). This algorithm requires O(p?) operations per update.
When condition (30) holds, Smith and Kohn (1996) observed that fast updating of ¢g(y) can

be obtained as follows. This is based on the representation of g(y) in (27) and (28) as
9(v) = (1+) D PA+ Y'Y = (1 +1/e) ' W'W) =0+ 2r () (32)

where T'T = X! X, for T upper triangular and W = T’_IX;Y. T may be obtained by the
Cholesky decomposition. The representation (32) follows by noting that when D}, Ri,Dj, =
(X Xy) ! |X, 5717\ Df Ry DL, ™ V2 = (14+¢)"%/? and Y'X, (X, Xy+(Di, Ry DY) 1) IXLY =
(14 1/¢)"'W'W. Dongarra, Moler, Bunch and Stewart (1979, Ch. 10) provide an algorithm for
fast updating of T, and hence W, whenever X;Xv is changed by only one row and column. But
this is precisely what happens when only one component of v is changed. Thus, the algorithm
of Dongarra et al. (1979) may be used to update (32). This algorithm requires O(qg) operations

per update, where v is the changed value.

4.4 Exhaustive Calculation of 7(vy|Y)

Under the conjugate hierarchical prior, exhaustive calculation of m(y|Y’) is feasible in moderately
sized problems. In general, this simply entails calculating g(-y) for every « value and then summing
over all vy values to obtain the normalization constant. However, under conditions (29) or (30),
the calculation of g(v) for every « value can be substantially speeded up by using the updating

schemes described in Section 4.3.

12



This can be done by exploiting an ordering of the 2P v values where consecutive «y differ by just
one component. Such an ordering is provided by the Gray Code, see Press, Teukolsky, Vetterling
and Flannery (1994). After computing g(v), T and W for an initial v value, subsequent values
of T and W can be obtaining with the appropriate fast updating scheme by proceeding in the
Gray Code order. As each new value of T' and W is obtained, g(-y) in (31) or (32) can be quickly
recomputed. Related applications of the Gray Code for exhaustive computation are described in
Diaconis and Holmes (1994).

By using sequential updating as v is varied according to the Gray Code, this exhaustive
calculation is feasible for p less than about 25. For example, using the fast updating algorithm
with condition (29), performing the computations on a Sun Sparcstation 10 took about 7 seconds
for p = 15, and about 5 minutes for p = 20. The entire calculation under (29) requires O(2Pp?)
operations since each update requires O(p?) operations. The entire calculation under (30) is apt
to be even faster since each update requires fewer operations.

A referee has pointed out to us that a brute force computation going through the models in
any order requires O(2Pp3) operations. Thus, exhaustive calculation by brute force should be
feasible in any problem with p less than about 20. In terms of feasibility, the Gray code approach
is only buying us models with about 20-25 regressors. Of course, when possible, the Gray code
approach will always be substantially faster.

Finally, note that there is a possibility for round-off error buildup with these sequential com-
putations. In particular, round-off error can occur with the fast updating algorithms when
vi‘m) /USV@) is set extremely large under (29), or when X'X is extremely ill-conditioned under
(30). In any case, we recommend that the final value of g(y) be fully recomputed using the
Cholesky decomposition to check that no round-off error has occurred. In our experience, we

have always found complete agreement using double precision.

4.5 Conjugate MCMC Exploration of the Posterior

For large p, exhaustive calculation of (| Y') is not feasible. However, it is still possible to use
MCMC methods to search for high probability v values. The availability of g(vy) in (24), (27), (31)

and (32) allows for the easy construction of MCMC algorithms (described below) for simulating
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a Markov chain

y, ey (33)

which is converging in distribution to 7(y|Y'). Although similar in spirit to the simulation search
in Section 3.2, the sequence (33) is a Markov chain generated directly from the conditional form
g(7y), whereas the sequence (12) is a subsequence of the auxiliary Markov chain (11) obtained by
applying the Gibbs sampler to an expression for the full posterior.

Just as for the sequence (12), the sequence (33) will, in many cases, have the property that
high probability v values will appear more quickly than low probability values, thereby facilitating
the exploration for the more “promising” models. Indeed, the empirical frequencies of the -y values
will be consistent estimates of their probability under 7(y | Y). As with (12), the length of the
sequence (33) can be much smaller than 27 and still serve to identify at least some of the high
probability values. Even for moderate p, where exhaustive calculation is feasible, it may be cost
effective (in terms of time) to instead use MCMC search when the goal is simply the identification
of high probability v values.

Instead of using empirical frequency estimates as in the nonconjugate setup, an attractive
feature of the conjugate prior is the availability of the exact g(y) values which provides useful
information about 7(y |Y). First of all, the exact relative probability of two values vy and ~; is
obtained as g(vyp) / g(y1). This allows for the more accurate identification of the high probability
models among those selected. Furthermore, only minimal additional effort is required to obtain
these relative probabilities since ¢g(y) must be calculated for each of the visited v values in the
execution of the MCMC algorithms described in Sections 4.5.1 and 4.5.2.

The availability of ¢g(-y) also makes it possible to estimate the normalizing constant C,

m(y 1Y) =Cygly), (34)

as follows. Let A be a preselected subset of y values and let g(A) = 3°.c 4 g(7) so that 7(A|Y) =
C g(A). For a simulation of (33), a consistent estimate of C is obtained by
LS

QWK;MMW (35)

C =

where I4( ) is the indicator of the set A. Note that if (33) were an uncorrelated sequence, then

Var(C) = (C?/K)(1 — w(A|Y))/n(A|Y) suggesting that (35) will be a better estimator of C
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when 7(A |Y) is large. It is also desirable to choose A such that I4(y*)) will be inexpensive to
evaluate. Because the selection of A cannot depend on the simulation sequence used to evaluate
(35), we choose A to be a set of v values visited by a preliminary simulation of (33). As can be
seen in Section 5, these estimates can be remarkably accurate.

Inserting C' into (34) yields improved estimates of the probability of individual y values,
iy |Y)=Cg(), (36)
as well as an estimate of the total visited probability,
(B |Y)=Cy(B), (37)

where B is the set of visited 7 values. Note that 7#(B|Y’) can provide valuable information about

when to stop a MCMC simulation. Another useful quantity is
(C/C) 1. (38)

Since #(y|Y)/x(y|Y) = C/C, (38) measures of the uniform accuracy of the probability estimates.
It also measures the total probability discrepancy since . [ (y|Y)—7(v|Y)| = IC—C| >, 9(y) =
(©/cy - 1.

In the next two subsections, we describe various MCMC algorithms which should be useful for
generating a Markov chain (33). These algorithms are obtained as variants of the Gibbs sampler
and Metropolis-Hastings algorithms applied to g(7). In Section 5 we compare the relative merits

of the various algorithms on simulated sample problems.

4.5.1 Gibbs Sampling Algorithms

A variety of MCMC algorithms for generating the Markov chain (33) can be conveniently ob-
tained by applying the Gibbs sampler to g(y). As opposed to the nonconjugate case, obtaining
a convergent Markov chain does not require vgy,, > 0. Perhaps the simplest Gibbs sampler

implementation is obtained by generating each -y value componentwise from the full conditionals,

(recall vy = (71,72, -+ Yi=1,Yit1,--->Yp)) Where the v; may be drawn in any fixed or random

order. The results of Liu, Wong and Kong (1994) suggest that, because of the margining out of
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§ and o, the sequence (33) obtained by this algorithm should converge faster than the sequence
(12), making it more effective on a per iteration basis for learning about 7(y | Y').

The generation of the components in (39) in conjunction with g(vy) in (24) or (27), can be
obtained trivially as simulations of Bernoulli draws. Furthermore, under conditions (29) or (30),
the required sequence of Bernoulli probabilities can be computed fast and efficiently by exploiting
the appropriate updating scheme for g(y) from Section 4.3. To see this, note that the Bernoulli

probabilities are simple functions of the ratio

V1Y) g(vi = Ly)
_ , 40
y 1Y) g(vi = 0,74)) (40)

(v = 1,7
(v = 0,7

At each step of the iterative simulation from (39), one of the values of g(-y) in (40) will be available
from the previous component simulation. The other value of g() can then be obtained by using
the appropriate updating scheme from Section 4.3 since v is varied by exactly one component.
As a valuable byproduct, this sequence of g(y) values can be stored to obtain exact relative
probabilities or probability estimates via (35), (36) and (37) of the visited y values.

As noted by Smith and Kohn (1996), this Gibbs sampler can be substantially faster under
condition (30) where fast updating to 7 requires O(qg) operations, than under (29) where fast
updating requires O(p?) operations. This is likely to happen when 7(y|Y) is concentrated on
those v for which ¢, is small, namely the parsimonious models. This advantage could be especially
pronounced in large problems with many useless predictors.

Simple variants of the componentwise Gibbs sampler can be obtained by generating the com-
ponents in a different fixed or random order. Note that in any such generation, it is not necessary
to generate each and every component once before repeating a coordinate. Another variant of
the Gibbs sampler can be obtained by drawing the components of v in groups, rather than one
at a time. Let {I;}, k = 1,2,...,m be a partition of {1,2,...,p} so that, I C {1,2,...,p},
Ul = {1,2,...,p} and Iy, N Iy, = 0 for k1 # ka. Let yr, = {vi|i € It} and v,y = {vi | i & Ix}.

The grouped Gibbs sampler generates the Markov chain (33) by iterative simulation from
VI, |’Y(Ik.)7Y k:1727"'7m' (41)

As before, when condition (29) or (30) holds, the conditional distribution in (41) can be computed
fast and efficiently by exploiting the appropriate updating scheme for g(y) from Section 4.3. This

can be done by computing the conditional probabilities of each 77, in the Gray Code order.
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The potential advantage of using the grouped Gibbs sampler is improved convergence of the
Markov chain (33). This might be achieved by choosing the partition so that strongly correlated ;
are contained in the same Ij, thereby reducing the dependence between draws in the simulation.
Intuitively, clusters of such correlated ; should correspond to clusters of correlated X; which, in
practice, might be identified by clustering procedures. As before, variants of the grouped Gibbs

sampler can be obtained by generating the «y, in a different fixed or random order.

4.5.2 Metropolis-Hastings Algorithms

Another class of MCMC algorithms for generating the Markov chain (33) from g(vy) is the
Metropolis-Hastings (MH) algorithms. To construct an MH algorithm, one begins with a Markov
transition kernel, say q(y°,v'), called a proposal. For each 7 value, ¢(y°,7!) is a probability
distribution over y!' values. For a given proposal ¢(y°,7!), the corresponding MH algorithm

generates each transition from () to yU*1) in (33) as follows.
1. Generate a candidate value v* with probability distribution q(’y(j ),7*).
2. Set vt = ~* with probability

e {aa) gty
oM (D, %) = mln{g(;(j)jyv*) gg(vyj))’l} ' "

Otherwise, y7+1) = (),

Under weak conditions on q(7°,v!), the sequence (33) obtained by this algorithm will be a Markov
chain which is converging to m(y | Y), see Chib and Greenberg (1995) or Tierney (1994).

When condition (29) or (30) holds, the acceptance probability o™ in (42) can be computed
fast and efficiently by exploiting the appropriate updating scheme for g(y) described in Section
4.3. Just as for the Gibbs sampler described in Section 4.5.1, when 7(y|Y’) is concentrated on
those  for which ¢, is small, such an MH algorithm can be substantially faster under condition
(30) than under (29).

A special class of MH algorithms, the Metropolis algorithms, are obtained from the class of

proposals ¢(7°,v!) which are symmetric in (4°,~!). For this class, the form of (42) simplifies to

oM (4D 4%y = min{ 9(r') 1}. (43)



Perhaps the simplest symmetric proposal is
0 1 S 1
g’y =1/p it Y by -l =1 (44)
1
This yields the Metropolis algorithm
1. Generate a candidate v* by randomly changing one component of ().
2. Set Ut = 4* with probability o™ (y(9),4*). Otherwise, yU*1) =40

This algorithm was proposed in a related model selection context by Madigan and York (1995)
who called it MC3. It was used by Raftery, Madigan and Hoeting (1993) for model averaging, and
was suggested for the SSVS context by Clyde and Parmigiani (1994) based on an earlier version
of this paper.

It is interesting to observe that the algorithm obtained by replacing o™ (v\7),v*) in (43) with

ol ( 9(v") (45)

g(v D) +g(v*)’

is a componentwise Gibbs sampler (39) which randomly chooses the next component to generate.

A %) =

Because it will always be the case that o ('y(j),'y*) > aG(y(j),v*), the Metropolis algorithm is
more likely to move at each step. Liu (1996) has shown that this Gibbs sampler is inferior to the
Metropolis algorithm under the asymptotic variance criterion of Peskun (1973), and has proposed
the Metropolized Gibbs sampler, an improved alternative which may also be interest of here.
The proposal (44) is a special case of the class of symmetric proposals of the form
P
9’7" = qa if 21: Iy =il = d. (46)

Such proposals yield Metropolis algorithms of the form
1. Generate a candidate v* by randomly changing d components of 'y(j ) with probability gg.
2. Set Ut = 4* with probability a™ (y(9), 4*). Otherwise, yU*1) =40

Here g4 is the probability that v* will have d new components. By allocating some weight to gq4
for larger d, the resulting algorithm will occasionally make big jumps to different v values. In
contrast to the the algorithm obtained by (44) which only moves locally, such algorithms require

more computation per iteration.
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Finally, it may also be of interest to consider asymmetric proposals such as

a(°,") = qa if Z =) (47)

Here g4 is the probability of generating a candidate value v* which corresponds to a model with
d more variables 4(9). When d < 0, v* will represent a more parsimonious model than v(). By
suitable weighting of the g4 probabilities, such Metropolis-Hastings algorithms can be made to

explore the posterior in the region of more parsimonious models.

5 Nonconjugate and Conjugate MCMC Performance

In this section, we illustrate and compare the performance of three MCMC methods for posterior
exploration under the nonconjugate and the conjugate setups: the SSVS Gibbs algorithm (13)
for the nonconjugate setup, denoted NG (for nonconjugate Gibbs); the fixed order component-
wise Gibbs algorithm (39) for the conjugate setup, denoted CG (for conjugate Gibbs); and the
simple Metropolis algorithm based on (44) for the conjugate setup, denoted CM (for conjugate
Metropolis). Although many other methods are available for comparison, these three algorithms
capture some of the basic differences among the different MCMC choices for the nonconjugate
and conjugate setups.

The performance of each of these methods is compared on three different, simulated variable
selection problems. To facilitate performance comparisons, we used the same hyperparameter
settings for all three methods: prior correlation matrix R, = I, inverse Gamma parameters
v =10 and X\ = 62 (the least squares estimate based on the full model), and v prior (4) with
w; = 0.5 which yields 7(y) = 1/2P. We used identical values of 0;, = 6 = 1, Voy;, = vo > 0,
Vly, = V1, U())k,y(i) = vy > 0 and UTW‘) = o] across all models and coefficients. To match the

nonconjugate and conjugate priors, we set v§ = vg/6% and v} = v1/6?% as suggested in (18).

5.1 Computational Speed

We begin with a comparison of the computational speed of the NG, CG and CM algorithms. For
each value of p, we simulated sample regression data Y ~ Ng,(X 3,021) as in (1), using X1, ..., X,
iid ~ Ngp(0,1), B; = 1.5i/p for i = 1,...,p, and o = 2.5. The algorithms were applied with the

previously described settings and v /vy = vi/v§ = 100. For each such data set, we measured
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the time it took each algorithm to generate p components of v, which we call one iteration. For
the NG and CG algorithms, one iteration entails simulating all p 7;’s once, whereas for the CM
algorithm, one iteration entails simulating p v values, each of which differs from the preceding
value by at most one component. We note that all three algorithms here require O(p*) operations
per iteration. Nonetheless, their speeds appear to be different.

Figure 2 plots minutes to compute 100 iterations versus p for each algorithm on a Sun SPARC-
station 10 using a Fortran program compiled with the fast option. We use o to denote NG values,
A to denote CG values, and 4 to denote CM values. Clearly, NG generates iterations much faster
than CG and CM, which appear to be roughly equivalent. Furthermore, the speed advantage of
NG is more pronounced for large p. Nonetheless, it is practical to generate thousands of iterations
for large problems with all three algorithms. For example, generating 1000 iterations of v when
p = 100, takes about 30 seconds using NG and about 5 minutes using CG and CM. When p = 200,
it takes about 8 minutes using NG and about 40 minutes using CG and CM. It is interesting that
analytical simplification has actually led to increased computational requirements per iteration
for CG and CM.

Of course, the amount of information provided by these algorithms will depend on the de-
pendence structure of the Markov chain output. To investigate this issue in the following sample
problems, we compare the performance of NG, CG and CM for a fixed amount of execution time
rather than a fixed number of iterations. To make the comparisons fair, we use one value of -y per
iteration from the output of each of the three algorithms. Note that for CM this only uses every
pth value of the output sequence. Alternatively, we could have used p values of «y per iteration
for all three algorithms by taking each implicit new value of v created each time a component
7vi is generated. Although this is a more efficient use of the output for CG, it is somewhat less

satisfactory for NG which generates a new value of 3 for each iteration.

5.2 Three Sample Problems

We proceeded to compare the performance of NG, CG and CM on three simulated sample prob-
lems to illustrate the relative strengths of the MCMC approaches. In all three problems, we
constructed n = 180 observations on p = 15 potential regressors. We used p small enough so

that we could easily obtain the actual posterior characteristics for comparisons. In particular, we
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computed exact posterior distributions m(y | Y) under the conjugate prior using the exhaustive
calculation based on the Gray Code sequencing described in Section 4.4. We also used very long
runs of the NG algorithm to verify that the nonconjugate and conjugate posterior probabilities
were close enough for our comparisons.

The first sample problem is a simple one in which the posterior is concentrated on a relatively
small number of models. In this situation we find that all three algorithms perform quite well.
The second problem is constructed to have severe multicollinearity. Here we see that all the
algorithms perform surprisingly well, although the conjugate algorithms have an advantage. The
third problem is designed to be very difficult by constructing data which provide very little
coefficient information and by setting the variance ratio vy /vy = vj/vg large. In this situation,

the conjugate algorithms are seen to have a substantial advantage.

5.2.1 A Straightforward Problem

For our first sample problem, we constructed n = 180 observations on p = 15 potential regressors
by generating Zi, ..., Z15, 7 iid ~ Nigo(0,I) and setting X; = Z; + 2Z for i = 1,...,15. This
induced a pairwise correlation of about 0.8 among the X;. We set evenly spaced values f3; = 2i/15
for i = 1,...,15, and set ¢ = 2.5. Our draw of Y ~ Nigo(X3,0%1) resulted in least squares
estimates of the 3; with classical standard errors ranging from .18 to .22 and t-statistics ranging
from 1.1 to 11.7. For this problem, we ran NG, CG, and CM using the previously described
settings with vy /vy = v]/v§ = 100.

We begin by comparing NG, CG and CM on the basis of how well each marginal probability
w(y; = 1Y) is estimated by the empirical frequency of v; = 1 in a short simulation run. To
account for computational speed differences, we ran each algorithm for the same amount of time
rather than for the same number of iterations. We set the time to be that required to generate
500 iterations of NG (about one second). This entailed 290 iterations of both CG and CM.

The top panel of Figure 3 plots the estimates obtained by NG (o), CG (A) and CM (4) on a
single short run together with the actual 7(y; = 1]Y’) values (o) (under the conjugate prior). All
three estimates are very close to the true values. As an interesting aside, we note that 7(y; = 1|Y)
tends to increase with ¢, starting off close to 0 when f; is small, increasing to about 0.5 when j;

is close to 1, and ending up at 1 when j; is close to 2. This is exactly the desired effect of setting
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0 = 1 in this problem.

As suggested by Geweke (1992) and Geyer (1992), we proceeded to measure the precision of
these estimates by their Monte Carlo standard errors, SE(¥;) = ((I/K) 2inj<k (1 — |B[/K) ¢ (h)) 1/2,
where ¢; is the autocovariance function of the 7; sequence (see Brockwell and Davis (1991)) and
v; is the empirical frequency of v; = 1 in a sequence of length K. To obtain ¢;, we simulated
additional independent long runs of 25,000 iterations for NG, CG, and CM. In all cases ¢; dies
off after 45 lags so we set ¢;(h) =0 for h > 45.

The bottom panel of Figure 3 plots Monte Carlo standard errors, SE(%;), for one second runs
of NG, CG and CM. From the plot we see that the NG estimates (o) have the smallest standard
errors, followed by CG (A), and lastly CM (+), although the difference between NG and CG
is slight. Note that all the Monte Carlo standard errors are small with the largest being about
0.035. In this problem, the posterior is sufficiently well behaved that computational speed is the
dominant performance factor. This suggests that in problems where p is large and the posterior
is still reasonably informative, the computational efficiency of NG may render it superior to the
other algorithms.

We next compare NG, CG and CM on the basis of what can be learned about the high
posterior probability v values in a moderately long simulation run. We set the time to be that
required to generate 5000 iterations of NG (about ten seconds). This entailed 2900 iterations of
CG and CM. Out of the 2'5 = 32,768 possible « values, on such a run, NG, CG, and CM visited
984, 840, and 818 different values, respectively. These visited values accounted for 86.3%, 83.5%
and 82.5% of the total (conjugate) posterior probability, respectively, and included virtually all of
the high probability values. To see this, Figure 4 plots the actual posterior probability for all 21°
~ values on the vertical axis. Points to the left of the vertical line correspond to v values which
were not drawn in our ten second runs and points to the right of the vertical line correspond to y
values which were drawn. Within each subset the posterior probabilities are plotted in ascending
order. The top, middle, and bottom plots correspond to NG, CG, and CM respectively. It is clear
from the plots that,in this problem, all three algorithms found virtually all the high posterior
probability v values.

As described in Section 4.5, a valuable feature of using the conjugate prior is the availability

of g(7y) in (24) and (27). In addition to providing the exact relative posterior probabilities of the
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visited 7y values, this allows for the estimation of the norming constant C' for which 7(y|Y") = Cyg(v)
in (34). Applying (35) to the CG output, with A determined by a very short preliminary run
of 100 iterations, we obtained an estimate C' for which C'//C' = .976. This C' provides estimates
(36) of the probability of individual  values, and an estimate (37) of the total visited probability
with a uniform accuracy (38) of .024. For example, the estimate of the total visited probability
is 81.5% which is remarkably close to the actual value of 83.5%. Such estimates are unavailable

with the nonconjugate formulation.

5.2.2 A Multicollinear Problem

Our second sample problem is constructed to have severe and complicated multicollinearity. We
start by constructing some of the X; in the same manner as in problem 5.2.1. Again generating
Ziy... 215, Z iid ~ Nigo(0,1), we set X; = Z; + 27 for i = 1,3,5,8,9,10,12,13,14, 15 only. To
induce strong multicollinearity, we then set Xo = X1 +.15725, Xy = X34 .157y, Xg = X5+ .15,
X7 = Xg+ X9 — Xq0+ .15Z7, and X1 = X4 + X15 — X12 — X33 + .15Z11. This construction
resulted in a correlation of about .998 between X; and X;; for ¢ = 1,3,5. A similarly strong
linear relationship was present within the sets (X7, X3, X9, X10) and (X711, X192, X13, X14, X15).

To make the problem difficult we set g = (1.5,0,1.5,0,1.5,0,1.5,—1.5,0,0,1.5,1.5,1.5,0,0).
Although we have not put Xs directly in the model, it is so highly correlated with X; that we
can only expect to conclude (since 6 = 1) that at least one of X; and X» is needed. Simi-
larly, X3, X5, (X7 — X3g) and (X171 + X312 + X33) are in the model but are highly correlated with
Xy, Xg, (X9 — X10) and (X174 + X15) respectively. Finally, we set o = 2.5 as in problem 5.2.1. Our
draw of Y ~ Nigo(X3,02I) resulted in least squares estimates of of the 3; with classical stan-
dard errors ranging from 1.1 to 1.4, which were much larger than those of problem 5.2.1. Their
t-statistics ranged from -2.7 to 3.5. We ran NG, CG and CM as before using v; /vy = v} /vg = 100.

Proceeding as in problem 5.2.1, we compared the performance of NG, CG and CM on the
basis of a short and a moderate simulation run. For the short run, we again set the time to be
that required to generate 500 iterations of NG (about one second) which entailed 300 iterations
of CG and CM. For the moderate run, we again set the time to be that required to generate 5000
iterations of NG (about ten seconds) which entailed 3000 iterations of CG and CM.

For the short run comparisons, the top panel of Figure 5 shows that, even in this problem, NG,
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CG and CM all yield very good estimates of the marginals 7(y; = 1|Y). Many of the probabilities
are quite close to 0.5. Although one might be tempted to conclude from the marginals that there
is little evidence for the inclusion of X5 or X4, we also computed the NG estimate of w(ys = 1
and/or v¢ = 1|Y’) which turned out to be 0.88. The Monte Carlo standard errors in the bottom
panel of Figure 5 reveal that here, the conjugate methods, CG and CM, are superior to NG.
Generally, CG appears to perform best.

For the moderate run comparisons, Figure 6 illustrates the ability of all three algorithms
to find the high probability models in this multicollinear problem. Again, NG, CG, and CM
visited essentially all of the high probability models. Out of the 32,768 possibilities, NG, CG,
and CM visited 2701, 1954 and 1952 different « values accounting for 59.7%, 51.1% and 51.7% of
the posterior probability . All three algorithms visited more v values and less total probability
than in problem 5.2.1. This is not surprising because the posterior probability = (y |Y) is less
concentrated here.

Applying (35) to the CG output here, with A again determined by a very short preliminary
run of 100 iterations, we obtained an estimate of the norming constant C' for which C'/C' = 1.059.
This C provides estimates (36) of the probability of individual v values, and an estimate (37) of
the total visited probability with a uniform accuracy (38) of .059. The total visited probability
estimate here is 54.1% as opposed to the actual value of 51.1%.

5.2.3 A Weak Information Problem

Our third sample problem is identical to problem 5.2.1 with two important exceptions: o = 200
rather than 2.5, and v /vy = v]/v§ = 2500 rather than 100. The effect of such a large o is to
vastly diminish the information provided by the data for determining if |3;] > § = 1. Indeed,
our draw of Y ~ Nigo(X/3,021I) here resulted in least squares estimates of the 3; with classical
standard errors ranging from 13 to 16, which were much larger than in problems 5.2.1 and 5.2.2.
Their t-statistics ranged from -1.25 to 1.48. In this case, the likelihood is relatively flat so that
the posterior and prior are very similar. The effect of increasing v /vy and vj /v is to increase
the separation between the components of the mixture prior for each g;.

With vy /vy large, we expect NG to perform poorly in this example. To see this, consider

the extreme case where the likelihood in 3 is flat so that each conditional draw of 8 by NG is
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a draw from the prior (7). If 7; starts at 0, then the next draw of f; will be from the N(0,vp)
distribution. With v; /vy large, such a draw is, with very high probability unlikely to look like a
draw from the N (0, v;) distribution so that the next draw of 7; will very likely be a 0. Eventually
we will get a draw from N(0,vg) so far out in the tail that the subsequent ; draw is 1. But
then we start drawing from the 3; from the N(0,v1) and it becomes highly unlikely that a draw
will look like it comes from the N (0,vg) distribution and ~; is stuck at 1. As a result, the NG
transition probabilities for ; from 0 to 1 and from 1 to 0 will be very small. This will cause NG
to generate long sequences of 0’s and long sequences of 1’s, yielding slowly converging estimates.

Proceeding as in problems 5.2.1 and 5.2.2, we compared the performance of NG, CG and CM
on the basis of a short and a moderate simulation run. For the short run, we again set the time to
be that required to generate 500 iterations of NG (about one second) which entailed 320 iterations
of CG and CM. For the moderate run, we again set the time to be that required to generate 5000
iterations of NG (about ten seconds) which entailed 3200 iterations of CG and CM.

The top panel of Figure 7 shows that with a short run, NG, CG and CM still produced
extremely accurate estimates of the marginal probabilities w(y; = 1|Y). Note that for this
problem, the actual posterior probabilities are slightly less than the prior probabilities w; = 0.5, a
consequence of setting vy /vy = vj/v§ to be so large. The bottom panel of Figure 7 clearly shows
the superiority of CG and CM over NG in this problem. The Monte Carlo standard errors for
NG are around 0.1 while those of CG and CM are around 0.02. Given the noninformative nature
of the problem, the methods perform remarkably well at estimating the marginal probabilities
m(y=1]Y).

Figure 8 illustrates how the methods search the model space in this problem. Here is a clear
indication that the methods can fail. All three methods miss models which have relatively high
probability. Indeed, NG, CG, and CM visit 2453, 2932, and 2937 distinct v values, accounting
for 13.3%, 16.5% and 16.3% of the total probability, respectively. This weak performance appears
to be a consequence of a relatively flat posterior which provides much less information that the
posteriors in problems 5.2.1 and 5.2.2. Of course, one might argue that the performance here
is not so bad since many of the models with relatively high posterior probability were actually
identified.

Applying (35) to the CG output here, with A again determined by very short preliminary run
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of 100 iterations, we obtained an estimate of the norming constant C for which C /C = 1.250.
This C provides estimates (36) of the probability of individual v values, and an estimate (37) of
the total visited probability with a uniform accuracy (38) of .250. The total visited probability

estimate here is 20.7% as opposed to the actual value of 16.5%.

6 Constructing Financial Index Tracking Portfolios Via Bayesian

Variable Selection

In this section, we illustrate the application of Bayesian variable selection to a real problem
involving p = 200 potential regressors. In addition to showing how the prior may be reasonably
constructed for this problem, we show how estimates of the marginal probabilities w(y; = 1Y)
and calculation of exact relative probabilities using g(y) can be useful on very large problems.

The problem addressed here is that of constructing, from a large pool of stocks, a portfolio
(linear combination) of a small number of stocks such that the portfolio returns are highly cor-
related with the returns on a stock market index such as the Standard and Poor’s stock market
index (SP500), itself a large portfolio of 500 stocks. This problem is of interest because investment
portfolios which track broad market indices seem to manifest desirable risk-to-return tradeoffs. By
using only a small number of stocks, the transaction costs of constructing and maintaining such
a tracking portfolio can be considerably reduced. It is also of some academic interest to identify
the nature of a small number of stocks which explain a substantial portion of the behavior of the
market.

By considering the regression of the index returns on the individual stock returns, this portfolio
construction problem can be treated as a variable selection problem. To illustrate this application,
we considered the specific problem of constructing a portfolio to track the SP500 from a pool of
p = 200 candidate stocks. The data we used consisted of 362 observations of weekly returns on
Y, the SP500 index, and on X1, ..., X290, 200 randomly selected stocks for the period January
1985 to December 1991. The data were obtained from the Center for Research in Security Prices
database (CRSP) at the University of Chicago Graduate School of Business.

An important consideration in constructing a tracking portfolio is to keep the size of the

portfolio weights above a certain level so that transaction costs don’t outweigh the benefits of
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diversification. Because the regression coefficients here correspond to the portfolio weights, this
requirement can be satisfied by using a threshold of practical significance. In this particular
problem, we chose such a threshold as follows. Roughly speaking, suppose a tracking portfolio of
50 stocks was the largest which would be considered. An acceptable equally weighted portfolio
of that size would then have (3; ~ .02. Not wanting to stray too far from such a weight, we chose
0i = .008 as our threshold. In practice, other considerations, such as transaction costs and the
value of the portfolio, would be used to choose such a threshold.

Because of the vast number of possible models in this problem, 2?°°, we began by using a
Bayesian approach to search for a more manageable number of candidate models. To do this,
we used the nonconjugate hierarchical prior with R, = I in order to take advantage of the
computational speed of the nonconjugate Gibbs algorithm (NG) from Section 5. The values of
Voy;, and viy,, were chosen to satisfy (8) with ¢;, = .008 and Vlygs, /’U(yy(i) = 625. The values
v =5 and A\, = .007? for the inverse gamma prior (3) were chosen so that the full model least
squares estimate s7 ¢ was in the left tail of (02 |y) and the sample variance s was in the right
tail. Finally, we used the independence prior m(y) = [Jw] (1 — w;)" =) in (4) with w; = 0.05.
This choice of w; small put increased prior weight on parsimonious models, and provided a more
peaked posterior.

Using the NG algorithm with this prior and all p = 200 candidate stocks, we simulated 11,000
v values and kept the last 10,000. The top panel of Figure 9 displays the sorted values of the
m(y; = 1]Y) estimates in descending order. Initially, there are 6 stocks that have estimates close
to 1. After that the m(y; = 1|Y) estimates decline, getting close to zero at about the 50" stock.
As a check on the prior inputs, we fit 200 nested regressions where stocks were added one at a time
in order of the decreasing 7(y; = 1|Y) estimates. The R? values from these regressions, displayed
in the bottom panel of Figure 9, increase most rapidly for the variables with large 7(y; = 1Y)
estimates. This suggests that these marginal probability estimates correspond to the explanatory
power of the variables. The rapid increase of the R? values also suggests that the SP500 can be
fit reasonably well with a relatively small subset of the 200 stocks.

Based on the above, we felt it would be informative to run the conjugate Gibbs algorithm (CG)
from Section 5 with the 50 stocks which obtained the largest w(y; = 1|Y’) estimates above. This

would allow us to compute the exact relative probabilities using g(7y), and would allow for many
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more iterations in a reasonable amount of time. Using the matching prior obtained by (18) with
6% = .005%, and setting w; = .01 to obtain an even more peaked posterior, we simulated 450,000
7 values with the CG algorithm. We note that the 7(y; = 1Y) estimates converged quickly and
remained stable throughout the simulation. By recording g(7) as the simulation progressed, we
were able to quickly identify the most probable models which were visited.

The relative probabilities of the 789 most probable models are displayed in order in Figure 10.
These were all the models visited whose relative probability was within a factor of .00674 (= -5
on the log posterior scale) of the best model. This relative probability distribution is very peaked
suggesting that a small subset of models are far more promising than the rest. It was surprising
that many of these 789 models were visited only once during the simulation, highlighting the
value of being able to use g(7) to identify promising models. Of course, in such a vast problem it
is unlikely that we have found the very highest probability model. Nevertheless, it does appear
that at least some of these models are good. For example, the model with the highest relative
probability included 21 variables and yielded R? = 95.6% which was virtually identical to the 21
variable model obtained using stepwise regression. Interestingly, the posterior probability of this
stepwise model was only .00176 of our maximum probability model.

In this example, we have illustrated how one might use Bayesian variable selection with various
heuristics on a large problem to select a small set of models for further consideration. Having done
this, we anticipate that the practitioner would then carefully examine the features of these models
to select the one which best met the goals of the particular application. For the construction of
tracking portfolios, this would entail looking at various measures of cost, risk and return of the
implied portfolios as well as standard regression diagnostics. Although reductions to a smaller
set of models can also be accomplished with frequentist methods such as stepwise selection, such
methods are apt to lead to a different set of models because they are based on different criteria,
see George and McCulloch (1995). At the very least, Bayesian variable selection can provide a

promising set of alternatives.
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7 Discussion

In this paper, we have described and compared a variety of approaches for prior specification
and posterior computation for Bayesian variable selection. The main differences between these
approaches can be summed up as follows.

To begin with, prior specification corresponding to the removal of a predictor z; can be ob-
tained by either a continuous distribution on [; which is concentrated at 0, or by assigning an
atom of probability to the event 3; = 0. The continuous prior is useful for removing predictors
whose coefficients are too small to be practically significant. The potential of this approach is
illustrated by Wakefield and Bennett (1996) who use it in a pharmacokinetic context to select
dosage predictors on the basis of ”clinical” significance rather than statistical significance. The
atom at §; = 0 prior is useful for eliminating only those predictors whose coefficients cannot be
distinguished from 0. The potential of this approach is illustrated by Smith and Kohn (1996) who
use it to select knots for spline smoothing.

Another distinguishing characteristic of prior specification is the difference between noncon-
jugate and conjugate forms for the coefficient priors. Nonconjugate forms offer the advantage
of precise specification of a nonzero threshold of practical significance, and appear to allow for
more efficient MCMC exploration with approximately uncorrelated predictors. Conjugate forms
offer the advantage of analytical simplification which allows for exhaustive posterior evaluation in
moderately sized problems (p less than about 25). In larger problems where posterior evaluation
is not feasible, conjugate forms allow for exact calculation of relative posterior probabilities and
estimates of total visited probability by MCMC posterior exploration. Furthermore, conjugate
forms appear to allow for more efficient MCMC exploration with more correlated designs.

For the purpose of posterior exploration, large variety of MCMC algorithms can be con-
structed based on the Gibbs sampler and Metropolis-Hastings algorithms. The simplest of these
are the basic Gibbs sampler and the Metropolis algorithm which succesively update models by
changing a single coordinate at a time. In terms of identifying high probability models, both
of these algorithms performed comparably in our simulation examples. This comparability was
also observed by Clyde, Desimone and Parmigiani (1996) who labeled Gibbs as SSVS and the
Metropolis as MC3. Interestingly, Clyde et al found that a mixture of SSVS and MC? performed

better than either one. As discussed in Section 4.5, many other extensions of these algorithms
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are straighforward to construct.

Finally, we should point out that when the goal is prediction, it will usually be more appro-
priate to average predictions over the posterior distribution rather than using predictions from
any single model, see Geisser (1993). The potential of prediction averaging in the context of
variable selection uncertainty has been nicely illustrated by Clyde et. al. (1996) and Raftery et.
al. (1993). Of course, in situations where a single model is needed, such as in the dosage problem
of Wakefield and Bennett (1996) and in the portfolio problem of Section 6, then the Bayesian

approach will entail selection from among the high posterior probability models.
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