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Abstract

The general problem of statistical regression is concerned with the discovery of a

relationship between y and a set of potential predictors x1, . . . , xp. Because y may be

related only to an unknown subset of the potential predictors, especially when p is

large, variable selection is also an inherent part of this problem. In this chapter, we

describe two very different Bayesian approaches to this general problem. In one case,

variable selection takes place in the context of a tightly specified parametric model.

Here, priors may be used to guide the model search and posterior quantities of interest

are evident. In the other case, a far more flexible model, essentially nonparametric,

allows for the opportunity to discover richer structure in the data, but requires more

subtle methods for inference. With simple examples, we show how this second approach

allows for model-free variable selection, and further for model-free interaction detection,

the discovery of when variables work together to influence the response.
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1 Introduction

The general problem of statistical regression is concerned with the discovery of a relationship

between a variable of interest y and a set of potential predictors x1, . . . , xp. It is usually

realistic, especially when p is large, to consider that y may be related only to an unknown

subset of the potential predictors, thus making variable selection an inherent part of the

problem. In this paper, we describe two very different Bayesian approaches to this general

problem. The feasible implementation of both of these approaches has been made possible

by Markov chain Monte Carlo (MCMC) Bayesian posterior simulation, Gelfand & Smith

(1990) and Tierney (1994). In particular, variations of the Gibbs sampler and the Metropolis-

Hastings algorithms have allowed for the exploration of the otherwise intractable posteriors

via simulation.

One approach, which dovetails with classical parametric approaches to variable selection,

begins with an assumption that the relationship between y and x1, . . . , xp can be described

by a full parametric model within which the actual subset model is nested. The most popular

form used here is the normal linear model, in large part because of its appealing analytical

tractability and because of its usefulness as an approximation to other forms, possibly after

suitable transformations. A structured hierarchical mixture prior that captures all sources

of remaining uncertainty is then used to obtain a posterior distribution which allocates more

probability to the more promising subset models.

In contrast to the parametric approach, our second approach does not require an initial

assumption about the nature of all the relationships between y and the subsets of x1, . . . , xp.

Nonparametric in nature, it begins with a very rich over parametrized functional form, a

sum-of-trees model, that approximates a wide class of functions from Rp to R. However,

with this more complex model it becomes more challenging to formulate useful priors and

extract information about the relationship between y and x. A strong regularization prior

over the multitude of parameters of the a sum-of-trees model is used to obtain a posterior

distribution over the possible relationships between y and x1, . . . , xp. A variety of useful

inferential summaries can be obtained by MCMC sampling from this posterior. In particular,

by keeping track of how often each predictor is used in the sum-of-trees model, this approach

allows for model-free variable selection, and further for model-free interaction detection, the

discovery of when variables work together to influence the response.
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2 Parametric Bayesian Structure Discovery

To illustrate the parametric Bayesian approach to structure discovery, we focus on the clas-

sical version of the problem which begins with the assumption of a normal linear model for

every subset model, namely

Y = Xγβγ + ε, ε ∼ Nn(0, σ2I) (1)

where Y is the n × 1 vector of y observations, Xγ is the n × qγ matrix whose columns

correspond to the γth subset of x1, . . . , xp, and βγ is the qγ × 1 vector of unknown regression

coefficients. For convenience, we have indexed each of the 2p possible subset choices by

γ = (γ1, . . . , γp)
′, (2)

where γi = 1 or 0 according to whether predictor xi is included or excluded, respectively.

The size (number of covariates) of the γth subset is thus qγ ≡ γ′1. The variable selection

problem may then be regarded as how to use the data to choose γ. Particular Bayesian

treatments of this formulation yield analytical reductions that allow for faster calculations

as well as clearer insights how the machinery works. Such Bayesian treatments also extend

naturally to likelihoods that are a function of Xγ only through Xγβγ. There is by now a vast

literature on Bayesian analyses for this formulation. See, for example, George & McCulloch

(1997), Chipman, George & McCulloch (2001) Clyde & George (2004), and the references

therein.

It should be noted that assumption (1) for every possible submodel γ is a strong assumption.

Its strength is that it effectively turns the the variable selection problem into a model selection

problem which can be treated using variations of standard Bayesian parametric formulations.

Its weakness is that a subset of predictors may be rejected because a normal linear submodel

is inadequate rather than because Y is unrelated to the subset.

2.1 Prior formulations

The parametric problem formulation in (1), provides a likelihood L(βγ, σ, γ | Y ). Thus, a

Bayesian analysis proceeds with the choice of prior forms for

p(βγ, σ, γ) = p(βγ, σ | γ)p(γ). (3)
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For the specification of the model space prior p(γ), many Bayesian variable selection imple-

mentations have used simple independence priors of the form

p(γ) = wqγ (1− w)p−qγ , (4)

with a prespecified value for w, the expected proportion of x′is in the submodel. Under this

prior, each xi enters the submodel independently with probability p(γi = 1) = 1 − p(γi =

0) = w. To avoid the fact that any such prior will be informative about the size of the model,

a reasonable alternative is to margin out w in (4) with respect to a Beta prior to obtain

p(γ) =
B(α + qγ, β + p− qγ)

B(α, β)
, (5)

a special case of the more general form

p(γ) =

(
p

qγ

)−1
h(qγ) (6)

which is uniform over the set of submodels of a given size qγ. See George & McCulloch

(1993), Cui & George (2008) and Scott & Berger (2010).

For the specification of the parameter prior p(βγ, σ | γ) = p(βγ | σ2, γ) p(σ2 | γ), an especially

convenient choice is the conjugate normal-inverse-gamma prior

p(βγ | σ2, γ) = Nqγ (0, σ2Σγ), (7)

p(σ2 | γ) = p(σ2) = IG(ν/2, νλ/2). (8)

(p(σ2) here is equivalent to νλ/σ2 ∼ χ2
ν). A valuable feature of this prior is its analytical

tractability; βγ and σ2 can be eliminated by routine integration to yield

p(Y | γ) ∝ |X ′γXγ + Σ−1γ |−1/2|Σγ|−1/2(νλ+ S2
γ)
−(n+ν)/2 (9)

where

S2
γ = Y ′Y − Y ′Xγ(X

′
γXγ + Σ−1γ )−1X ′γY. (10)

The use of these closed form expressions can substantially speed up posterior evaluation and

MCMC exploration, as we will see.

For choosing the prior covariance matrix Σγ that controls p(βγ | σ2, γ), specification is sub-

stantially simplified by setting Σγ = c Vγ, where c is a scalar and Vγ is a preset form such as

Vγ = (X ′γXγ)
−1 (as in the Zellner (1986) g-prior) or Vγ = Iqγ , the qγ × qγ identity matrix.

Having fixed Vγ, the goal is then to choose c large enough so that p(βγ |σ2, γ) is relatively flat
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over the region of plausible values of βγ, thereby reducing prior influence. At the same time

it is important to avoid excessively large values of c because the Bayes factors will eventually

put increasing weight on the null model as c→∞, the Bartlett-Lindley paradox. For practi-

cal purposes, a rough guide is to choose c so that p(βγ |σ2, γ) assigns substantial probability

to the range of all plausible values for βγ. A recent alternative of interest, are the hyper-g

priors for βγ which effectively integrate out c with respect to Beta prime distributions, Cui

and George (2008), Liang, Paulo, Molina, Clyde & Berger (2008) and Maruyama & George

(2011).

In choosing values for the hyperparameters that control p(σ2), λ may be thought of as a

prior estimate of σ2, and ν may be thought of as the prior sample size associated with this

estimate. Alternatively, one might use the data informally to choose λ and ν as follows. Let

σ2
FULL and σ2

Y denote the traditional estimates of σ2 based on the saturated and null models

respectively. Treating σ2
FULL and σ2

Y as rough under- and over-estimates of σ2, one might

choose λ and ν so that p(σ2) assigns substantial probability to the interval (σ2
FULL, σ

2
Y ). This

should at least avoid gross misspecification. As a third option, the explicit choice of λ and

ν can be avoided by using p(σ2) ∝ 1/σ2, the limit of the inverse-gamma prior as ν → 0.

2.2 Posterior Exploration and Information Extraction

The previous conjugate prior formulations allow for analytical margining out of β and σ2

from p(Y, β, σ2 | γ) to yield a computable, closed form expression

g(γ) ∝ p(Y | γ)p(γ) ∝ p(γ | Y ) (11)

that can greatly facilitate posterior calculation and exploration. For example, when Σγ =

c (X ′γXγ)
−1, we can obtain

g(γ) = (1 + c)−qγ/2(νλ+ Y ′Y − (1 + 1/c)−1W ′W )−(n+ν)/2p(γ) (12)

where W = T ′−1X ′γY for upper triangular T such that T ′T = X ′γXγ (obtainable by the

Cholesky decomposition). This representation allows for fast updating of T , and hence W

and g(γ), when γ is changed one component at a time, requiring O(q2γ) operations per update,

where γ is the changed value.

The availability of g(γ) ∝ p(γ | Y ) allows for the flexible construction of MCMC algorithms

that simulate a Markov chain

γ(1), γ(2), γ(3), . . . (13)
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converging (in distribution) to p(γ | Y ). A variety of such MCMC algorithms can be conve-

niently obtained by applying the Gibbs sampler with g(γ). For example, by generating each

γ component from the full conditionals

p(γi | γ(i), Y ) (14)

(γ(i) = {γj : j 6= i}) where the γi may be drawn in any fixed or random order. The generation

of such components can be obtained rapidly as a sequence of Bernoulli draws using simple

functions of the ratio
p(γi = 1, γ(i) | Y )

p(γi = 0, γ(i) | Y )
=
g(γi = 1, γ(i))

g(γi = 0, γ(i))
. (15)

The availability of such closed form g(γ) also facilitates the use of MH algorithms. Because

g(γ)/g(γ′) = p(γ | Y )/p(γ′ | Y ), these are of the form:

1. Simulate a candidate γ∗ from a transition kernel q(γ∗ | γ(j)).

2. Set γ(j+1) = γ∗ with probability

α(γ∗ | γ(j)) = min

{
q(γ(j) | γ∗)
q(γ∗ | γ(j))

g(γ∗)

g(γ(j))
, 1

}
. (16)

3. Otherwise, set γ(j+1) = γ(j).

When available, fast updating schemes for g(γ) can be exploited in all these MCMC algo-

rithms.

The simulated Markov chain sample γ(1), . . . , γ(K) contains valuable information about the

posterior p(γ | Y ). Empirical frequencies provide consistent estimates of individual model

probabilities or characteristics such as p(βi 6= 0 | Y ). When closed form g(γ) are available,

we can do better. For example, the exact relative probability of any two values γ0 and γ1

is obtained as g(γ0) / g(γ1) in the sequence of simulated values. Such g(γ) also facilitates

estimation of the normalizing constant p(γ | Y ) = C g(γ). Let A be a preselected subset of

γ values and let g(A) =
∑

γ∈A g(γ) so that p(A | Y ) = C g(A). Then, a consistent estimate

of C is

Ĉ =
1

g(A)K

K∑
k=1

IA(γ(k)) (17)

where IA( ) is the indicator of the set A. This yields alternative estimates of the probability

of individual γ values p̂(γ |Y ) = Ĉ g(γ), as well as an estimate of the total visited probability

p̂(B | Y ) = Ĉ g(B), where B is the set of visited γ values.
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3 Nonparametric Bayesian Structure Discovery

To illustrate the nonparametric Bayesian approach to structure discovery, we focus on an ap-

proach we call BART (Bayesian Additive Regression Trees), (Chipman, George & McCulloch

(2010)) which assumes only that y is related to x = (x1, . . . , xp) via a flexible sum-of-trees

model of the form1

Y =
m∑
j=1

g(x;Tj,Mj) + ε, ε ∼ N(0, σ2), (18)

where each Tj is a binary regression tree with a set Mj of associated terminal node constants

µij, and g(x;Tj,Mj) is the function which assigns µij ∈ Mj to x according to the sequence

of decision rules in Tj. These decision rules are binary splits of the predictor space of the

form {x ∈ A} vs {x /∈ A} where A is a subset of the range of x. When m = 1, (18) reduces

to the single tree model used by Chipman, George & McCulloch (1998) for Bayesian CART.

Under (18), E(Y | x) equals the sum of all the terminal node µij’s assigned to x by the

g(x;Tj,Mj)’s. As these can be any values, it is easy to see that the sum-of-trees model (18)

is a very flexible representation capable of representing a wide class of functions from Rn to R,

especially when the number of trees m is large. Note also that the sum-of-trees representation

is composed of many simple functions from Rp to R, namely the g(x;Tj,Mj), rendering it

much more manageable than a representation with more complicated basis elements such as

multidimensional wavelets or multidimensional splines.

3.1 A regularization prior

We complete the BART model specification by imposing a prior over all the parameters of

the sum-of-trees model, namely (T1,M1), . . . , (Tm,Mm) and σ. Note that these parameters

entail all the bottom node parameters as well as the tree structures and decision rules, a

very large number of parameters, especially when m is large. We do this using a prior

that effectively regularizes the fit by keeping the individual tree effects from being unduly

influential. Without such a regularizing influence, large tree components would overwhelm

the rich structure of (18), thereby limiting its scope of approximation.

To begin with we simplify our prior specification task by restricting attention to prior for-

1Note that here we use Y as a random scalar rather than an n× 1 random vector as in Section 2.
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mulations of the form

p((T1,M1), . . . , (Tm,Mm), σ) =

[∏
j

(∏
i

p(µij | Tj)

)
p(Tj)

]
p(σ), (19)

where µij ∈ Mj. These independence restrictions simplify prior specification the choice of

prior forms for p(Tj), p(µij | Tj) and p(σ), and to simplify matters further we consider for

all of these, the same prior forms as those proposed by Chipman et al. (1998) for Bayesian

CART. These forms are controlled by just a few interpretable hyperparameters which can

be calibrated using the data to yield effective default specifications for regularization of the

sum-of-trees model.

For p(Tj), we use the Chipman et al. (1998) tree-generating process which is specified by

three aspects: (i) the probability that a node at depth d (= 0, 1, 2, . . .) is nonterminal, given

by

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (20)

(ii) the distribution on the splitting variable assignments at each interior node, and (iii) the

distribution on the splitting rule assignment in each interior node, conditional on the selected

splitting variable. For (ii) and (iii) we use the simple defaults in Chipman et al. (1998) ,

namely a uniform prior on each set of possibilities

For p(µij | Tj), we use the conjugate normal distribution N(µµ, σ
2
µ) which allows µij to be

margined out, greatly simplifying MCMC posterior calculations. Note that under this choice

the prior distribution of E(Y | x) is N(mµµ,mσ2
µ), (because E(Y | x) is the sum of m

independent µij’s under the sum-of-trees model). Thus, it is highly probable that E(Y |x) is

between ymin and ymax, the observed minimum and maximum of y in the data, a fact which

we can use to guide the specification of the hyperparameters µµ and σµ. The essence of

our informal strategy is then to choose µµ and σµ so that N(mµµ,mσ2
µ) assigns substantial

probability to the interval (ymin, ymax). This can be conveniently done by choosing µµ and

σµ so that mµµ − k
√
mσµ = ymin and mµµ + k

√
mσµ = ymax for some preselected value

of k such 1,2 or 3. For example, k = 2 would yield a 95% prior probability that E(Y | x)

is in the interval (ymin, ymax). The goal of this specification strategy for µµ and σµ is to

ensure that the implicit prior for E(Y | x) is in the right “ballpark” in the sense of assigning

substantial probability to the entire region of plausible values of E(Y | x) while avoiding

overconcentration and overdispersion. As long as this goal is met, BART seems to be very

robust to the variations of these specifications.
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For p(σ), we also use a conjugate prior, here the inverse chi-square distribution σ2 ∼ ν λ/χ2
ν ,

the same form we used for p(σ) for the parametric variable selection problem previously.

Here again, we use a data-informed prior approach, to guide the specification of the hyper-

parameters ν and λ, in this case to assign substantial probability to the entire region of

plausible values of σ while avoiding overconcentration and overdispersion. Essentially, we

calibrate the prior df ν and scale λ using a “rough data-based overestimate” σ̂ of σ. Two

natural choices of where σ̂ are 1) a “naive” specification, the sample standard deviation of

Y , or 2) a “linear model” specification, the residual standard deviation from a least squares

linear regression of Y on all the predictors. We then pick a value of ν between 3 and 10

to get an appropriate shape, and a value of λ so that the qth quantile of the prior on σ is

located at σ̂, that is P (σ < σ̂) = q. We consider values of q such as 0.75, 0.90 or 0.99 to

center the distribution below σ̂.

3.2 Posterior Calculation and Information Extraction

Combing the regulation prior with the likelihood, L((T1,M1), . . . , (Tm,Mm), σ | y) induces a

posterior distribution

p((T1,M1), . . . , (Tm,Mm), σ| y) (21)

over the full sum-of-trees model parameter space. Fortunately, the following backfitting

MCMC algorithm can be used to simulate samples from this posterior.

We begin with a Gibbs sampler at the outer level. Let T(j) be the set of all trees in the sum

except Tj, and similarly define M(j), so that T(j) will be a set of m − 1 trees, and M(j) the

associated terminal node parameters. A Gibbs sampling strategy for sampling from (21) is

obtained by m successive draws of (Tj,Mj) conditionally on (T(j),M(j), σ):

(Tj,Mj)|T(j),M(j), σ, y, (22)

j = 1, . . . ,m, followed by a draw of σ from the full conditional:

σ|T1, . . . Tm,M1, . . . ,Mm, y. (23)

The draw of σ in (23) is simply a draw from an inverse gamma distribution and so can be

easily obtained by routine methods. More subtle is the implementation of the m draws of

(Tj,Mj) in (22). This can be done by taking advantage of the following reductions. First,
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observe that the conditional distribution p(Tj,Mj|T(j),M(j), σ, y) depends on (T(j),M(j), y)

only through

Rj ≡ y −
∑
k 6=j

g(x;Tk,Mk), (24)

the n−vector of partial residuals based on a fit that excludes the jth tree. Thus, the m

draws of (Tj,Mj) given (T(j),M(j), σ, y) in (22) are equivalent to m draws from

(Tj,Mj)|Rj, σ, (25)

j = 1, . . . ,m. Because we have used a conjugate prior for Mj, p(Tj|Rj, σ) can be obtained

in closed form up to a norming constant. This allows us to carry out each draw from (25)

in two successive steps as

Tj|Rj, σ (26)

Mj|Tj, Rj, σ. (27)

The draw of Tj in (26), although somewhat elaborate, can be obtained using the Metropolis-

Hastings (MH) algorithm of Chipman et al. (1998). The draw of Mj in (27) is simply a set

of independent draws of the terminal node µij’s from a normal distribution. The draw of Mj

enables the calculation of the subsequent residual Rj+1 which is critical for the next draw of

Tj.

We initialize the chain with m simple single node trees, and then iterations are repeated until

satisfactory convergence is obtained. Fortunately, this backfitting MCMC algorithm appears

to mix very well as we have found that different restarts give remarkably similar results even

in difficult problems. At each iteration, each tree may increase or decrease the number of

terminal nodes by one, or change one or two decision rules. The sum-of-trees model, with

its abundance of unidentified parameters, allows for “fit” to be freely reallocated from one

tree to another. Because each move makes only small incremental changes to the fit, we can

imagine the algorithm as analogous to sculpting a complex figure by adding and subtracting

small dabs of clay.

For inference based on our MCMC sample, we rely on the fact the our backfitting algorithm

is ergodic. Thus, the induced sequence of sum-of-trees functions

f ∗(·) =
m∑
j=1

g(·;T ∗j ,M∗
j ), (28)

for the sequence of draws (T ∗1 ,M
∗
1 ), . . . , (T ∗m,M

∗
m), is converging to p(f | y), the posterior

distribution on the “true” f(·). Thus, by running the algorithm long enough after a suitable
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burn-in period, the sequence of f ∗ draws, say f ∗1 , . . . , f
∗
K , may be regarded as an approximate,

dependent sample of size K from p(f | y). Bayesian inferential quantities of interest can then

be approximated with this sample as indicated below.

To estimate f(x) or predict Y at a particular x, in-sample or out-of-sample, a natural choice

is the average of the after burn-in sample f ∗1 , . . . , f
∗
K ,

1

K

K∑
k=1

f ∗k (x), (29)

which approximates the posterior mean E(f(x) | y). Posterior uncertainty about f(x) may

be gauged by the variation of f ∗1 (x), . . . , f ∗K(x). For example, a natural and convenient

(1−α)% posterior interval for f(x) is obtained as the interval between the upper and lower

α/2 quantiles of f ∗1 (x), . . . , f ∗K(x).

Finally, BART provides a new approach to variable selection and interaction detection by

identifying those variables or combination of variables that appear most often in the fitted

sum-of-trees models. Interestingly, the variable selection strategy does not seem to work well

when m is large because the redundancy offered by so many trees allows many irrelevant

predictors to be mixed in with the relevant ones. However, as m is decreased and that

redundancy is diminished, BART tends to heavily favor relevant predictors for its fit. In

a sense, when m is small the predictors compete with each other to improve the fit. In

contrast, interaction detection seems to work well with large m.

This model-free approach to variable selection is accomplished by observing what happens

to the x component usage frequencies in a sequence of MCMC samples f ∗1 , . . . , f
∗
K as the

number of trees m is set smaller and smaller. More precisely, for each simulated sum-of-trees

model f ∗k , let zik be the proportion of all splitting rules that use the ith component of x.

Then

vi ≡
1

K

K∑
k=1

zik (30)

is the average use per splitting rule for the ith component of x. As m is set smaller and

smaller, the sum-of-trees models tend to more strongly favor inclusion of those x components

which improve prediction of y and exclusion of those x components that are unrelated to y.

In effect, smaller m seems to create a bottleneck that forces the x components to compete for

entry into the sum-of-trees model. As we shall see in Section 4.2, the x components with the

larger vi’s will then be those that provide the most information for predicting y. A BART

approach to model-free interaction detection proceeds in analogous fashion, for example, let

zijk be the proportion of all trees in which both the ith and jth components of x appear.
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4 Information Extraction: Details and Examples

In Section (3) we outlined the BART model and discussed, in general terms, how it can

be used to extract information about the relationship between y and x. In Section (4.1)

we provide additional detail on the CART MCMC, highlighting the crucial aspects of our

prior and algorithm that enable us to find structure. In Section (4.2) we give examples of

information extraction. We show how we can extract information about what variables are

important (using equation (30)) and which pairs of variables work together generating an

“interaction” effect.

4.1 Stochastic Search in CART Models

Perhaps the crucial model search step in Section (3) is the draw given in (26): Tj|Rj, σ. Our

Gibbs sampler MCMC structure allows us to focus on one tree so that we are back to a

CART problem. It is in this step, that we actually modify the structure of a tree. It is in

this step, that a new variable may be introduced to our model.

This draw is done using a Metropolis-within-Gibbs proposal. The CART algorithm given

in Chipman et al. (1998) uses several types of proposals (see also Wu, Tjelmeland & West

(2007) for additional MCMC strategies).

The essential proposals2 are a complementary BIRTH/DEATH pair of moves. In a BIRTH

proposal, a bottom node of the current tree is chosen and we propose to give it a pair of

children. A nog node of a tree is a tree which has children, but no grandchildren. Thus, both

children of a nog node are bottom nodes. In a DEATH proposal, we choose a nog node from

the current tree and we propose “killing its children”. In order to make our general discussion

more concrete and document some of the details, we give the acceptance probability for a

BIRTH proposal.

The CART algorithm assumes a discrete set of possible split values for each component of x

and integrates out the bottom node µij so that our Metropolis search in tree space is over a

large but discrete set of possible models. Let T0 denote the current tree and T ∗ denote the

proposed tree. Thus, T ∗ differs from T0 only in that one of the bottom nodes of T0 has given

birth to a pair of children in T ∗.

2The other two proposals in CMG98 are CHANGE and SWAP.
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Since we are traversing a discrete space, we accept the proposal with Metropolis-Hastings

probability

α = min{1, P (T ∗)P (T ∗ → T0)

P (T0)P (T0 → T ∗)
} (31)

where P (T0) and P (T ∗) are the posterior probabilities of trees T0 and T ∗ respectively,

P (P → T0) is the probability of proposing T0 while at T ∗ (a DEATH), and P (T0 → T ∗)

(a BIRTH) is the probability of proposing T ∗ while at T0. P (T0) and P (T ∗) will depend on

both the likelihood and our prior, while the transition probabilities depend on the mechanics

of our proposal.

First we discuss the likelihood contribution. Let yi denote the observed y in the ith bottom

node given a tree T . Because the µij are iid in our prior we have:

p(y |T ) = Π p(yi |Ţ). (32)

Thus the contribution of the likelihood to the ratio P (P )/P (T0) is just

p(yl, yr |T ∗)
p(ylr |T0)

=
p(yl |T ∗) p(yr |T ∗)

p(ylr |T0)
(33)

where yl denotes the observations in the new left child in T ∗, yr denotes the observation in

the new right child in T ∗, and ylr denotes {yl, yr}. All other contributions to the likelihoods

cancel out because of the product form of (32). Note that all three terms in the right hand

side of (33) are just the predictive densities for a normal mean problem with known variance

and normal prior on the mean.

As with the likelihood, much of the prior contributions to the posterior ratio cancel out since

there is only place where the trees differ and our stochastic tree growing prior draws tree

components independently at different “places” of the tree. Hence the prior contribution to

the P (T ∗)/P (T0) ratio is

(PG) (1− PGl) (1− PGr)P (rule)

(1− PG)
, (34)

where

• PG: prior probability of growing at chosen bottom node of T0.

• PGl: prior probability of growing at new left child in T ∗.

• PGr: prior probability of growing at new right child in T ∗.

12



• P (rule): prior probability of choosing the rule defining the new children in T ∗.

Each of the PG quantities is obtained from (20). The prior P (rule) places a uniform dis-

tribution on variables and then a uniform distribution on the discrete set of split values

associated with the drawn variable.

Finally, the ratio P (T ∗ → T0)/P (T0 → T ∗), is given by

(PD) (Pnog)

(PB) (Pbot)P (rule)
, (35)

where

• PD: probability of choosing the death proposal at tree T ∗.

• Pnog: probability of choosing the nog node that gets you back T0.

• PB: probability of choosing a birth proposal at T0.

• Pbot: probability of choosing the T0 bottom node such that a birth gets you to T ∗.

• P (rule): probability of drawing the new splitting rule to generate T ∗’s children.

Our proposal draw of the new rule generating the two new bottom nodes is a draw from the

prior. It is in this draw that variable selection (or, perhaps, variable proposal) occurs! Note

that since our proposal for the rule is a draw from the prior, it cancels out in the ratio (31).

The formulas given above correspond very closely to the source code in the BayesTree package

in R. However, there are still many details omitted. For example, a quantity PGl might be

zero if we keep track of which variables in x have been “used up” in that no further splits

are possible.

4.2 Variable Selection and Interaction Detection Using BART

In this section we illustrate two forms of information extraction. The first is the variable

selection approach given in (30). The second, interaction detection, uncovers which pairs of

variables interact in analogous fashion by keeping track of the percentage of trees in the sum

in which both variables occur. This exploits the fact that a sum-of-trees model captures an

interaction between xi and xj by using them both for splitting rules in the same tree.

We illustrate the use of these methods in a simulated example and a real data example. Both

of examples are “old chestnuts”. Since our goal is interpretation, rather than prediction, we

hope the use of familiar examples eases the path of the reader.
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4.2.1 The Friedman Simulation Setup

We simulate n = 500 observations from our basic model

y = f(x) + σ Z, Z ∼ N(0, 1),

with x ten dimensional and

f(x1, x2, . . . , x10) = 10 sin(π x1 x2) + 20 (x3 − .5)2 + x4 + x5.

The xi are iid uniform on (0, 1) and σ = 1.

Friedman (1991) originally suggested this simulation setup to study the efficacy of nonlinear

regression techniques. However, the setup is perfect for illustrating variable selection and

the discovery of interaction. Only the first five of the ten x components matter. With ten x’s

there are 45 possible interaction pairs. Our simulated data has just one of these possibilities

present: only x1 and x2 interact. In a real application it would be of tremendous interest to

know that only these two variables interact, even without having further knowledge of the

functional form.

Results for one simulated data set are displayed in Figure (1). In panel (a) we have variable

selection results. This panel corresponds closely to Figure (5) of Chipman et al. (2010). For

each variable, we plot the posterior mean of the percentage of rules (across all m tree) which

use that variable. With m = 20, we very clearly identify the first five variables as being

important.

Panel (b) gives the interaction detection results. With ten variables, there are
(
10
2

)
= 45

possible variable pairs. For each pair, we plot the posterior mean of the percent of trees

(out of m) which use both of the variables in splitting rules. We normalize the m = 20 and

m = 200 results by dividing by each set of 45 posterior means by the maximum. Thus, the

largest value displayed in each case is one. With both m = 20 and m = 200 we clearly

identify the first pair (x1 and x2) as being of interest. With two variables involved, a pair is

less likely to come in inconsequentially, so that the identification of interesting pairs is less

sensitive to the choice of m than in the case of variable selection.

4.2.2 The Boston Housing Data

For an example with real data we turn to our second “old chestnut”, the Boston housing data.

The data where obtained from the R-package mlbench (R Development Core Team (2011)).
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Figure 1: In panel (a) we correctly identify the first five variables as being important. In

panel(b) we correctly identify the first interaction, which corresponds to variables x1 and x2.
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There are 506 observations. Each observation corresponds to neighborhood. The response is

the median house price in the neighborhood. There are 13 explanatory variables measuring

characteristics of the neighborhoods. We did a preliminary variable selection (using the

approach illustrated in the previous section) and tossed out three of the x’s. Fitted values

(from BART) with and without the three x’s are very similar.

Figure (2) displays the results of the interaction detection. The format is the same as in panel

(b) of Figure (1). Several pairs of interest are identified. Our real data has more interesting

structure than our simulated data! We will investigate the pair dis and lstat simply because

these variables are more easily understood. dis is the “weighted distances to five Boston

employment centers”. lstat is the “percentage of lower status of the population”.

In Figure (3) we attempt to graphically see the interaction between dis and lstat suggested

by Figure (2). In panel (a) we plot dis vs. lstat. Four subsets of points are identified

depending on whether dis and lstat are “low” or “high”. In the (b) panel we plot the

fitted values from the BART run with m = 200. Before fitting we subtracted off the average

response so the vertical axis is actually the amount the median value for a neighborhood is

above the average. The four boxplots correspond to the four data subsets indicated in panel

(a).

So, for example, the first boxplot displays the fitted prices when both ds and lstat are low.

The observations included here correspond to those highlighted in the bottom left corner of

panel (a). The label “dL lL” indicates that ds is Low and lstat is Low. Similarly, the third

boxplot is labeled “dH lL”, indicating that ds is High and lstat is Low.

The first pair of boxplots indicate the effect of increasing lstat when ds is low. The second

pair of boxplots indicate the effect of increasing lstat when ds is high. Clearly, the boxplots

indicate a strong interaction. For low dl, the effect of a the change in lstat is much more

pronounced. A nice neighborhood close to the city center is highly desirable whereas a bad

neighborhood close to the city center may be very bad.

5 Discussion and Beyond

The discovery of regression structure is an important and difficult problem in for all ap-

proaches to data analysis. With our modern computational tools it has become even more

important. However, in a sense, it has also become more difficult, as we struggle to grapple

with complex, high-dimensional models.
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Figure 2: Interaction detection for the Boston housing data with ten explanatory variables.

In this article, we describe and contrast two different Bayesian approaches that illustrate the

vast potential of Bayesian methods to extract information hidden in high dimensional data.

The first is based on the classical parametric form of the normal linear model, while the

second is based on a rich overparameterized sum-of-trees model, nonparametric in nature.

In our examples, we show that even though the overall BART sum-of-trees model is complex,

the simple structure of the individual tree components enables us to uncover structure with

inferential posterior summaries. In particular, we have shown how BART provides a novel

approach to model-free variable selection, the search for interesting variables, and model-free

interaction detection, the search for interesting pairs of variables. Going beyond what we

have presented here, the companion pieces by Clyde and Iverson (2011) and Gramacy (2011)

in this volume, shed new light on directions for the development of Bayesian methods for

grappling with model uncertainty.

As laid out by Clyde and Iverson (2011), the general Bayesian formulations for dealing with

model uncertainly includes our parametric Bayesian formulation for variable selection as a

special case. An important issue there is whether the class of models under consideration

includes the actual data generating model. When it does, the so-calledM-closed setting, the

implicit posterior model probabilities make sense. This will be the case in our parametric
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Figure 3: In panel (a) we identify four subsets of our data by whether each of ds and lstat

are low or high. In panel (b) the boxplots display the fitted values (median house values) for

the observations in the four subsets. The average of the dependent variable was subtracted

off so that the vertical axis is the amount the median value of a neighborhood is above

average. The first pair of boxplots both have low values of dis. The first box has low values

of lstat and the second box has high values of lstat. The second pair of boxplots again

compare low and high lstat but now ds is high.
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Bayesian variable selection framework when it is valid to assume that the complete data was

generated by normal linear model (with possibly some zero coefficients). However, it may

often be more realistic to allow that the unknown actual model is outside the class under

considerations, the so-called M-open setting. This is precisely the linear model assumption

limitation which we alluded to earlier, that a subset of actually related predictors may ignored

simply because the relationship is not linear. Recognizing that the general limitation of

using conventional Bayesian machinery for the M-open setting, Clyde and Iverson consider

alternatives to obtaining the weights corresponding to the conventional setting’s posterior

model probabilities. For this purpose they propose a principled decision theoretic cross-

validation approaches for selection of weights that optimize model averaged predictions.

A key message in Gramacy (2011) is the central role played by the prior formulation in

Bayesian variable selection. Indeed, the structured hierarchical mixture prior of Section

2.1 for the normal linear model, and the regularization prior of Section 3.1 for BART are

essential for the effectiveness of these approaches. In both cases, it is necessary to use

sensible hyperparameter values that balance “null-versus-alternative” possibilities in a way

that allows the variable selection information in the data to emerge. Gramacy speaks to

this in discussing the prior allocations that must be balanced in a variety of structured

hierarchical mixture priors for the linear model, priors with coefficient marginals that are both

concentrated near 0 and heavy-tailed, similar in the spirit to the lasso. By concentrating prior

probability near zero, strong input from the data is needed to escape a neighborhood about

zero. However, once the estimate has escaped from zero, the heavy tails allow it to wander

far. Going further, Gramacy shows how latent variable formulations allow extension of the

approaches to non-normal errors and binary observations. Convenient and efficient Gibbs

sampling algorithms for posterior computation are detailed throughout allowing Gramacy

to argue persuasively that these Bayesian approaches are powerful tools in our modern data

rich environment.
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