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Outline:

(i)

Trees and ensemble methods.

(ii)

BART: a Bayesian ensemble method.

(iii)

BART and “big data”:

- Parallel version of BART.

-Consensus Bayes and BART.
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Four papers:

Bayesian Additive Regression Trees, Annals of Applied Statistics, 2011.
(Chipman, George, McCulloch)

Parallel Bayesian Additive Regression Trees, Journal of Computational and
Graphical Statistics, forthcoming.
(M. T. Pratola, H. Chipman, J.R. Gattiker, D.M. Higdon, R. McCulloch and
W. Rust)

Bayes and Big Data: The Consensus Monte Carlo Algorithm, submitted
(Steven L. Scott , Alexander W. Blocker ,Fernando V. Bonassi , Hugh A.
Chipman, Edward I. George , and Robert E. McCulloch)

Chipman: Acadia; George: U Penn, Wharton; Pratola: Ohio State.

Gattiker, Hidgon, Rust: Los Alamos; Scott, Blocker, Bonassi: Google.

And,
Reversal of fortune: a statistical analysis of penalty calls in the National
Hockey League. Journal of Quantitative Analysis in Sports, forthcoming.
(Jason Abrevaya, Robert McCulloch)

Abrevaya: University of Texas at Austin.
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The Hockey Data

Glen Healey, commenting on an NHL broadcast:

Referees are predictable. The flames have had
three penalties, I guarantee you the oilers will have
three.

Well, guarantee seems a bit strong,
but there is something to it.

How predictable are referees?
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Got data on every penalty in every
(regular season) game for 7 seasons around the time they
switched from one referee to two.

For each penalty (after the first one in a game) let

revcall =

1 if current penalty and previous
penalty are on different teams,

0 otherwise.

You know a penalty has just been called,
which team is it on?
is it a reverse call on the other team???

Mean of revcall is .6 !
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For every penalty (after the first one in a game) we have:

Table: Variable Descriptions

Variable Description Mean Min Max

Dependent variable
revcall 1 if current penalty and last penalty are on different teams 0.589 0 1
Indicator-Variable Covariates
ppgoal 1 if last penalty resulted in a power-play goal 0.157 0 1
home 1 if last penalty was called on the home team 0.483 0 1
inrow2 1 if last two penalties called on the same team 0.354 0 1
inrow3 1 if last three penalties called on the same team 0.107 0 1
inrow4 1 if last four penalties called on the same team 0.027 0 1
tworef 1 if game is officiated by two referees 0.414 0 1
Categorical-variable covariate
season Season that game is played 1 7
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Table: Variable Descriptions

Variable Description Mean Min Max

Other covariates
timeingame Time in the game (in minutes) 31.44 0.43 59.98
dayofseason Number of days since season began 95.95 1 201
numpen Number of penalties called so far (in the game) 5.76 2 21
timebetpens Time (in minutes) since the last penalty call 5.96 0.02 55.13
goaldiff Goals for last penalized team minus goals for opponent -0.02 -10 10
gf1 Goals/game scored by the last team penalized 2.78 1.84 4.40
ga1 Goals/game allowed by the last team penalized 2.75 1.98 4.44
pf1 Penalties/game committed by the last team penalized 6.01 4.11 8.37
pa1 Penalties/game by opponents of the last team penalized 5.97 4.33 8.25
gf2 Goals/game scored by other team (not just penalized) 2.78 1.84 4.40
ga2 Goals/game allowed by other team 2.78 1.98 4.44
pf2 Penalties/game committed by other team 5.96 4.11 8.37
pa2 Penalties/game by opponents of other team 5.98 4.33 8.25

n = 57, 883.
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How is revcall related to the variables?

inrow2=0 inrow2=1

revcall=0 0.44 0.36

revcall=1 0.56 0.64

inrow2=1:
If the last two calls were on the same team
then 64% of the time, the next call will reverse and be on
the other team.

inrow2=0:
If the last two calls were on different teams, then the
frequency of reversal is only 56%.
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Of course,

we want to relate revcall to all the other variables jointly!

Well, we could just run a logit,

but with all the info, can we,
fairly automatically,
get a better fit than a logit gives?

What could we try?
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Data Mining Certificates Online
Stanford Center for Professional Development

Data Mining and Analysis

STATS202

Description

In the Information Age, there is an unprecedented amount of

data being collected and stored by banks, supermarkets,

internet retailers, security services, etc.

So, now that we have all this data, what do we with it?

The discipline of data mining and analysis provides crunchers

with the tools and framework to discover meaningful patterns

in data sets of any size and scale. It allows us to turn all of

this data into valuable, actionable information.

In this course, learn how to explore, analyze, and leverage data.

Topics Include

Decision trees

Neural networks

Association rules

Clustering

Case-based methods

Data visualization
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Modern Applied Statistics: Data Mining

STATS315B

Online

Description

Examine new techniques for predictive and descriptive learning using

concepts that bridge gaps among statistics, computer science,

and artificial intelligence.

This second sequence course emphasizes the statistical application of

these areas and integration with standard statistical methodology.

The differentiation of predictive and descriptive learning will be

examined from varying statistical perspectives.

Topics Include

Classification & regression trees

Multivariate adaptive regression splines

Prototype & near-neighbor methods

Neural networks

Instructors

Jerome Friedman, Professor Emeritus, Statistics
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http://www.sas.com/events/aconf/2010/bdmci61.html

Advanced Analytics for Customer Intelligence Using SAS

Predictive Modeling for Customer Intelligence: The KDD Process Model

A Refresher on Data Preprocessing and Data Mining

Advanced Sampling Schemes

cross-validation (stratified, leave-one-out)

bootstrapping

Neural networks

multilayer perceptrons (MLPs)

MLP types (RBF, recurrent, etc.)

weight learning (backpropagation, conjugate gradient, etc.)

overfitting, early stopping, and weight regularization

architecture selection (grid search, SNC, etc.)

input selection (Hinton graphs, likelihood statistics, brute force, etc.)

self organizing maps (SOMs) for unsupervised learning

case study: SOMs for country corruption analysis

Support Vector Machines (SVMs)

linear programming

the kernel trick and Mercer theorem

SVMs for classification and regression

multiclass SVMs (one versus one, one versus all coding)

hyperparameter tuning using cross-validation methods

case study: benchmarking SVM classifiers
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Opening up the Neural Network and SVM Black Box

rule extraction methods (pedagogical versus decompositional approaches such as

neurorule, neurolinear, trepan, etc.

two-stage models

A Recap of Decision Trees (C4.5, CART, CHAID)

Regression Trees

splitting/stopping/assignment criteria

Ensemble Methods

bagging

boosting

stacking

random forests
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A Tree

|goaldiff < 0.5

inrow2 < 0.5

numpen < 2.5

goaldiff < −0.5

timebetpens < 6.79167

tworef < 0.5

timebetpens < 3.39167

inrow2 < 0.5 inrow3 < 0.5

no:0.35
yes:0.65

0.40
0.60

0.46
0.54

0.28
0.72

0.34
0.66

0.37
0.63

0.45
0.55

0.35
0.65

0.52
0.48

0.42
0.58

I Last penalized was not ahead

I Last two penalties on same team

I Not long since last call

I one ref ⇒
72% revcall.

I Last penalized was ahead

I it has been a while since last
penalty

I last three calls not on same
team ⇒

48% revcall.
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Recall:

How do you fit a tree?

(i)

Build a big tree by greedy search.

(ii)

Prune it back using cross-validation.
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Ensemble Methods:

A single tree can be interpretable, but it does not give great
in-sample fit or out-of-sample predictive performance.

Ensemble methods combine fit from many trees to give an
overall fit.

They can work great!
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Let’s try Random Forests (Leo Brieman).

I Build many (a forest) of very big trees, each of which
would overfit on its own.

I Randomize the fitting, so the trees vary
(eg. In choosing each decision rule, randomly sample a
subset of variables to try, randomly resample data).

I To predict, average (or vote) the result of all the trees
in the forest.

For example, build a thousand trees !!!

Have to choose the number of trees in the forest and the
randomization scheme.

Wow! (crazy or brilliant?)

My impression is that Random Forests is the most popular
method.
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Let’s try Random Forests and trees of various sizes.

For Random Forests we have to choose the number of trees
to use and the number of variables to sample.

I’ll use the default for number of variables and try 200,500,
and 1500 trees in the forest.
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We have 57,883 observations and a small number of
variables so let’s do a simple train-test split.

train:

use 47,883 observations to fit the models.

test:

use 10,000 out-of-sample observations
to see how well we predict.
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Loss for trees of different sizes, and 3 forests of different sizes
(each forest has many big trees!).

Smaller loss is better.

Loss is measured by the deviance
( -2*log-likelihood (out-of-sample)).

2 4 6 8 10

13
25

0
13

35
0

13
45

0

model

lo
ss

TREE5

TREE10 TREE15 TREE20
TREE25

TREE30

RF200

RF500 RF1500

LOGIT

Logit does best!
Let’s try boosting and BART.
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GBM200
GBM300

GBM500

BART

GBM is Jerry Friedman’s boosting.
The number is the number of trees used.
Other parameters left at default.

BART is Bayesian Additive Regression Trees.
We used the default prior and 200 trees.



Intro

Trees and
Ensemble Methods

BART

PBART: Parallel
Bayesian Additive
Trees

Consensus Bayes

End

BART

We want to “fit” the fundamental model:

Yi = f (Xi ) + εi

BART is a Markov Monte Carlo Method that draws from

f | (x , y)

We can then use the draws as our inference for f .
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To get the draws, we will have to:

I Put a prior on f .

I Specify a Markov chain whose stationary distribution is
the posterior of f .
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Simulate data from the model:

Yi = x3
i + εi εi ∼ N(0, σ2) iid

--------------------------------------------------

n = 100

sigma = .1

f = function(x) {x^3}

set.seed(14)

x = sort(2*runif(n)-1)

y = f(x) + sigma*rnorm(n)

xtest = seq(-1,1,by=.2)

--------------------------------------------------

Here, xtest will be the out of sample x values at which we
wish to infer f or make predictions.
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--------------------------------------------------

plot(x,y)

points(xtest,rep(0,length(xtest)),col="red",pch=16)

--------------------------------------------------
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Red is xtest.
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--------------------------------------------------

library(BayesTree)

rb = bart(x,y,xtest)

length(xtest)

[1] 11

dim(rb$yhat.test)

[1] 1000 11

--------------------------------------------------

The (i , j) element of yhat.test is

the i th draw of f evaluated at the j th value of xtest.

1,000 draws of f , each of which is evaluated at 11 xtest
values.
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--------------------------------------------------

plot(x,y)

lines(xtest,xtest^3,col="blue")

lines(xtest,apply(rb$yhat.test,2,mean),col="red")

qm = apply(rb$yhat.test,2,quantile,probs=c(.05,.95))

lines(xtest,qm[1,],col="red",lty=2)

lines(xtest,qm[2,],col="red",lty=2)

--------------------------------------------------
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Example: Out of Sample Prediction

Did out of sample predictive comparisons on 42 data sets.
(thanks to Wei-Yin Loh!!)

I p=3 − 65, n = 100 − 7, 000.
I for each data set 20 random splits into 5/6 train and 1/6 test
I use 5-fold cross-validation on train to pick hyperparameters (except

BART-default!)
I gives 20*42 = 840 out-of-sample predictions, for each prediction,

divide rmse of different methods by the smallest

+ each boxplots represents
840 predictions for a
method

+ 1.2 means you are 20%
worse than the best

+ BART-cv best

+ BART-default (use default
prior) does amazingly
well!!
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A Regression Tree Model

Let T denote the
tree structure including
the decision rules.

M = {µ1, µ2, . . . , µb}
denotes the set of
bottom node µ’s.

Let g(x ; T ,M),
be a regression
tree function
that assigns a
µ value to x .

A Single Regression Tree Model 

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Let g(x;"), "  = (T, M) be a 
regression tree function that 
assigns a µ value to x 

Let T denote the tree structure 
including the decision rules 

Let M = {µ1, µ2, … µb} denote 
the set of bottom node µ's. 

A Single Tree Model:      Y = g(x;!) + ! 7 

A single tree model:

y = g(x ; T ,M) + ε.
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A coordinate view of g(x ;T ,M)

The Coordinate View of g(x;")  

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Easy to see that g(x;") is just a step function 

µ1 = -2 µ2 = 5 

⇔ 
µ3 = 7 

c 

d x2 

x5 

8 
Easy to see that g(x ; T ,M) is just a step function.
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The BART Model
Let  " = ((T1,M1), (T2,M2), …, (Tm,Mm)) identify a set of m trees and their µ’s. 

Y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + ! z,   z ~ N(0,1) 

The BART Ensemble Model 

E(Y | x, ") is the sum of all the corresponding µ’s at each tree bottom node. 

Such a model combines additive and interaction effects. 

µ1 

µ2 µ3 

µ4 

9 
Remark:  We here assume ! ~ N(0, !2) for simplicity, but will later see a successful 
extension to a general DP process model. 

m = 200, 1000, . . . , big, . . ..

f (x | ·) is the sum of all the corresponding µ’s at each
bottom node.

Such a model combines additive and interaction effects.
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Complete the Model with a Regularization Prior

π(θ) = π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ).

π wants:

I Each T small.

I Each µ small.

I “nice” σ (smaller than least squares estimate).

We refer to π as a regularization prior because it keeps the
overall fit from getting “too good”.

In addition, it keeps the contribution of each g(x ; Ti ,Mi )
model component small, each component is a “weak
learner”.
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BART MCMC

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

First, it is a “simple” Gibbs sampler:

(Ti ,Mi ) | (T1,M1, . . . ,Ti−1,Mi−1,Ti+1,Mi+1, . . . ,Tm,Mm, σ)

σ | (T1,M1, . . . , . . . ,Tm,Mm)

To draw (Ti ,Mi ) | · we subract the contributions of the
other trees from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M | T .
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To draw T we use a Metropolis-Hastings within Gibbs step.
We use various moves, but the key is a “birth-death” step.Because p(T | data) is available in closed form (up to a norming constant),  

we use a Metropolis-Hastings  algorithm. 

Our proposal moves around tree space by proposing local modifications  
such as 

=> 
? 

=> 
? 

propose a more complex tree 

propose a simpler tree 

Such modifications are accepted  according to their compatibility 
with p(T | data). 20 

Simulating p(T | data) with the Bayesian CART Algorithm   

... as the MCMC runs, each tree in the sum will grow and
shrink, swapping fit amongst them ....
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Build up the fit, by adding up tiny bits of fit ..
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Nice things about BART:

I don’t have to think about x’s
(compare: add x2

j and use lasso).

I don’t have to prespecify level of interaction
(compare: boosting in R)

I competitive out-of-sample.

I stable MCMC.

I stochastic search.

I simple prior.

I uncertainty.

I small p and big n.
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Back to Hockey

How can I use BART to understand the hockey data??

I have a problem !!!.

The sum of trees model is not interpretable.

Other methods (neural nets, random forests, ..) have the
same problem.
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Well, you can look into the trees for things you can
understand:

- what variables get used.
- what variables get used together in the same tree.

Or, estimate p(revcall = 1 | x) at lots of interesting x and
see what happens!!
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In practice, people often make millions of predictions.

We’ll keep it simple for the hockey data:

(i)

Change one thing at a time
(careful! you can’t increase numpens without increasing
time-in-game)

(ii)

Do a 25 factorial expermiment where we move 5 things
around, with each thing having two levels.
This will give us 32 x vectors to esimate p(revcall = 1 | x) at.
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Change the binary x ’s one at a time:

Top panel is the posterior distribution
of p(revcall) at various x .
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Bottom panel is the posterior distribution
of the difference in p(revcall) due to a change in x .
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Change the score:
x is lead of last penalized team.
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25 factorial:

r or R:
Last two penalties on different teams or the same team.

g or G:
Last penalized team is behind by one goal or ahead by one
goal.

t or T:
Time since last penalty is 2 or 7 minutes.

n or N:
Number of penalties is 3 or 12
(time in game is 10 or 55 minutes).

h or H:
Last penalty was not on the home team or it was.
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biggest at gRtnH:
last penalized behind, just had two calls on them,
has not been long since last call,
early in the game, they are the home team.
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I Yes, Glen, referees are predictable !!!

I If you analyze these carefully, there are interesting
interactions!!
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Top panel: effect of inrow2 at all settings of other variables:
effect is bigger, early in the game.
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Bottom panel: effect of goaldiff at all settings of other
variables
effect is bigger, late in the game.
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PBART: Parallel Bayesian Additive Trees

Dave Higdon said,

we tried your stuff (the R package BayesTree) on
the analysis of computer experiments and it
seemed promising but it is too slow”.

Recode with MPI to make it faster!!

MPI: Message Passing Interface.

Two Steps.

Step 1. Rewrote serial code so that it is “leaner”.
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Lean Code:

class tree {

public:

...

private:

//------------------------------

//parameter for node

double mu;

//------------------------------

//rule: left if x[v] < xinfo[v][c]

size_t v;

size_t c;

//------------------------------

//tree structure

tree_p p; //parent

tree_p l; //left child

tree_p r; //right child

};

1 double, two integers, three pointers.
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n bart/BayesTree MCMC new MCMC
1,000 57.725 14.057
2,000 136.081 27.459
3,000 211.799 40.483
4,000 298.712 54.454
5,000 374.971 66.900
6,000 463.861 82.084
7,000 545.995 95.737
8,000 651.683 107.911
9,000 724.577 120.778

10,000 817.711 135.764

The new code is 4 to 6 times faster!!

> 57.725/14.057

[1] 4.106495

> 817.711/135.764

[1] 6.023033

Note: We also use a more limited set of MCMC moves in
the new code but we find we get the same fits.
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Step 2:

Parallel MPI implementation.

Have p + 1 processor cores.
Split data up into p equal chunks.

I core 0 is the master. It runs the MCMC.

I core i , i = 1, 2, . . . , p has data chunk i in memory.

I Each core has the complete model ((Tj ,Mj)
m
j=1, σ) in

memory.

Note: with MPI cores and associated memory may be on
different machines.
Compare with openmp where the memory must be shared.
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I core 0 is the master. It runs the MCMC.

I core i , i = 1, 2, . . . , p has data chunk i in memory.

I Each core has the complete model ((Tj ,Mj )
m
j=1, σ) in memory.

Each MCMC step involves:

1. master core 0, initiates an MCMC step
(e.g. change a single tree, draw σ).

2. master core 0, sends out a compute request (needed for MCMC step) to
each slave node i = 1, 2, . . . p.

3. Each slave core i computes on it’s part of the data and sends the results
back to master core 0.

4. master core 0 combines the results from the p slaves and updates the
model using the results (e.g. changes a tree, obtains new σ draw).

5. master core 0, copies new model state out to all the slave cores.
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Keys to Parallel implementation:

I Lean model representation is cheap to copy out to all
the slave cores.

I MCMC draws all depend on simple conditionally
sufficient statistics which may be computed on the
separate slave cores, cheaply sent back to the master,
and then combined.

Even though the the overall model is complex, each local
move is simple !!
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Simple Sufficient Statistics:

Consider the birth-death step:

Because p(T | data) is available in closed form (up to a norming constant),  
we use a Metropolis-Hastings  algorithm. 

Our proposal moves around tree space by proposing local modifications  
such as 

=> 
? 

=> 
? 

propose a more complex tree 

propose a simpler tree 

Such modifications are accepted  according to their compatibility 
with p(T | data). 20 

Simulating p(T | data) with the Bayesian CART Algorithm   

Given a tree, we just have {Rij} ∼ N(µj , σ
2) iid in j th

bottom node, where R is resids from the the other trees..

Evaluating a birth-death is just like testing equality of two
normal means with an independent normal prior.

Sufficient statistic is just
∑

i rij for two different j
corresponding to left/right child bottom nodes.
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Timing

We did lots of timing exercises to see how well it works.

Here n = 200, 000, p + 1 = 40, time is to do 20,000
iterations.

processors run time (s)

2 347087
4 123802
8 37656

16 16502
24 9660
30 6303
40 4985
48 4477

40/8=5. 39/7 = 5.6. 37656/4985=7.5.

With 5 times as many processors we are 7.5 times faster.
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Here is a plot of the times.

Tser : time with serial code; Tpar : time with parallel code.
Ideally you might hope for

Tpar =
Tser

p + 1
.

So we plot 1
Tpar

vs. p + 1.

Looks pretty
linear.

Jump at about
p + 1 = 30.
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Here we look at the efficiency which is

E =
Tser

(p + 1)Tpar

If Tpar = Tser
(p+1) this would equal 1.

We timed 27 runs with m ∈ {50, 100, 200},
n ∈ {100000, 500000, 1000000}, p + 1 ∈ {9, 17, 25}.

If you have too few
observations on a core
the cost of message
passing eats into the
speed.

60% of p + 1 times

faster is still pretty

good!
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Consensus Bayes

At Google they were interested, but also politely scoffed.

Their attitude is that on a typical large network the
communication costs will really bite.

Some of our timings were on a shared memory machine with
32 cores over which we had complete control, but some were
on a cluster where you buy computes and these are over
several machines.

In any case, our setup may not work with the kind of
machine setup they want to use at Google.



Intro

Trees and
Ensemble Methods

BART

PBART: Parallel
Bayesian Additive
Trees

Consensus Bayes

End

So, a simpler idea is consensus Bayes.

Suppose you have a “cluster” of p “nodes”.

Again, you split the data up into p chunks (no master this
time!).

Then you assign each node one of the chunks of data.

Then you simply run a separate MCMC on each “node”
using its chunk of data.

If you want to predict at x , let
fij(x) be the i th draw of f on node j .

Then you get a set of consensus draws by

f c
i (x) =

∑
wj fij(x), wj = 1/Var(fij(x)).
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Consensus Bayes also involves an adjustment of the prior.

The idea is that

p(θ | D) ∝ L(D)p(θ) ∝ Πp
j=1L(Dj)p(θ)1/p.

where D is all the data and Dj is the data on chunk j .

So, you should use prior p(θ)1/p on each node.

This can work really well for simple parametric models, but
BART is “non-parametric” with variable dimension.
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Simulated data.

n = 20,000. k = 10. p = 30.

(1) True f (x) vs. serial BART f̂ (x).
(2) True f (x) vs. consensus BART f̂ (x),

no prior adjustment.
(3) True f (x) vs. consensus BART f̂ (x), prior adjustment.

5 10 15 20

5
10

15
20

true f(x)

ba
rt

 m
ea

n

5 10 15 20

5
10

15
20

true f(x)

co
ns

en
su

s 
ba

rt
 m

ea
n,

 n
o 

pr
io

r 
ad

ju
st

m
en

t

5 10 15 20

10
15

20

true f(x)

co
ns

en
su

s 
ba

rt
 m

ea
n,

 p
rio

r 
ad

ju
st

m
en

t

Consensus BART without prior adjustment is awesome!
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Top row: consensus no prior adjustment.
Bottom row: consensus prior adjustment.

First column, posterior mean of f (x) vs. serial BART posterior mean.
Second column, 5% quantile vs serial BART.
Third column, 95% quantile vs serial BART.
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Consensus BART without prior adjustment is awesome!
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Good:

Both approaches make BART a usable technique with large
data sets and seem to work very well.

Need to think more about how to make prior adjustment
(if any) for Consensus Bayes.

Bad:

While PBART is on my webpage, we need to make it easier
to use.

We have some R functions written and are testing, but it is
not available yet.
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Very Bad:

Have been promising new version of package for a while.

New faster version (with parallel computing) will be there
soon!!
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