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1.  Introduction

The generation of random samples from a truncated multivariate normal distribution, that is,

a multivariate normal distribution subject to multiple linear inequality restrictions, is a

recurring problem in the evaluation of integrals by Monte Carlo methods in econometrics

and statistics.  Sampling from a truncated multivariate Student-t distribution is a closely

related problem. The problem is central to Bayesian inference, where a leading example is

the normal linear regression model subject to linear inequality restrictions on the

coefficients (Geweke, 1986).  But it also arises in classical inference, when integrals enter

the likelihood function; McFadden (1989) has proposed the use of Monte Carlo integration

in one such instance.

Recently several promising solutions of this problem have been investigated.  A survey

of methods along with several contributions is provided in Hajivassiliou and McFadden

(1990).  One of these methods, the Gibbs sampler, is especially well suited to the problem.

It uses a simple algorithm that generates samples with great computational efficiency, but at

the cost of introducing three complications.  First, the drawings are not independent, which

complicates the evaluation of the accuracy of the approximation using standard methods like

those proposed in Geweke (1989).  Second, the distribution from which the drawings are

made converges to the truncated multivariate normal distribution, but  is not identical with it

at any stage.  Third, the method does not produce an estimate of the probability of the

constraint set under the unrestricted multivariate normal distribution.  Such an estimate is

often desirable and is provided by other methods, which sets the Gibbs sampler at a relative

disadvantage.

In this paper we contribute to the resolution of these three problems.  The solution of

the first two problems is an application of methods developed elsewhere (Geweke, 1991),

while the solution of the third is wholly developed here.  The ability to generate variates

from a truncated univariate normal distribution is a central building block in the solution of

the more general problem.  Section 2 describes an algorithm for the generation of variates

from a truncated univariate normal distribution that is substantially more efficient and

flexible than the method that has been favored in the past.  Drawing from the truncated

multivariate normal distribution with the Gibbs sampler is fully developed in Section 3,

including the evaluation of the accuracy of the numerical approximation and construction of

diagnostics for convergence.  These methods are extended to the multivariate Student-t

distribution in Section 4.  The estimation of the probability of the constraint set under the

unrestricted distribution is taken up in Section 5.
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Throughout the paper some standard but not universal notation is employed.  The

univariate normal probability density function is  φ(.), the corresponding cumulative

distribution function is  Φ(.),  and the inverse cumulative distribution function is  Φ-1(.).

The uniform distribution on the interval  [a, b]  is denoted  U[a, b].  The univariate truncated

normal distribution  TN(a, b) is the univariate normal restricted to (a, b): its density is  [Φ-

1(b) - Φ-1(a)]-1φ(.)  on (a, b)  and  0  elsewhere;  a = -∞  and  b = +∞  are permitted special

cases.

2. The mixed rejection algorithm for truncated univariate normal sampling

All of the methods described in this paper assume the ability to draw i.i.d. samples from a

truncated univariate normal distribution.  It is well recognized that rejection sampling from a

univariate normal distribution is impractical.  Inverse c.d.f. sampling (Devroye, 1986) is a

feasible alternative.  If  x  ~  TN(a, b), then  x = Φ-1(u),  u ~ U[Φ(a), Φ(b)].  This method

requires the evaluation of one integral for each draw, and if the values of  a  and  b  change

with the draws, then three evaluations are required.  The computation of  Φ-1(w)  requires

more time as  w →  0  or  w →  1, and the double precision implementation in the

IMSL/STAT library is unable to compute w = Φ-1(p)  if  |w| > 8. Here, we shall suggest a

different algorithm, whose execution times are substantially smaller than inverse c.d.f.

sampling, and can draw  x  ~  TN(a, b)  for any  a < b  so long as  |a| ≤ 35  and  |b| ≤ 35,

when programmed in double precision (64-bit) floating point arithmetic.

The algorithm produces i.i.d. samples from TN(a, b), including the cases  a = -∞  and

b = +∞.  It employs four different kinds of rejection sampling, depending on the values of

a  and  b.  In normal rejection sampling,  x  is drawn from  N(0, 1)  and accepted if  x ∈
[a, b].  In half-normal rejection sampling,  x  is drawn from  N(0, 1)  and  |x|  is accepted if

x ∈  [a, b]  (where  a ≥ 0).  In uniform rejection sampling,  x  is drawn from  U[a, b],  u  is

drawn independently from  U(0,1),  and  x  is accepted if  u ≤ φ(x)/φ(x*),  x* =

argmax[a,b][φ(x)].

Exponential rejection sampling is key to the algorithm, and requires description in

some detail.  The motivating example is  TN(a, ∞), where  a > 0, and possibly  Φ(a)  is close

to  1.  As  a → ∞,  the TN(a, ∞)  distribution comes to resemble the exponential distribution

as detailed in Geweke (1986, Appendix A).   Suppose  z  is drawn from an exponential

distribution on  [a, ∞)  with kernel  exp(-λz)  for  z ≥ a.  Consider fixing  λ   so as to

minimize the probability of rejection.  The acceptance probability must be proportional to
exp(-1

2z2)/exp(-λz), for  z ∈  [a, ∞).  Computing the constants of proportionality, we find

acceptance probabilities
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exp[-1
2(z2 + a2)] exp(-λz)  if  λ ≤ a, exp[-1

2(z - λ)2)]  if  λ ≥ a.

The first expression is maximized at  λ = a  for all  z.  Integrating the second expression

with respect to the exponential density  λexp[-λ (z-a)]  on  [a, ∞),  we find that the

acceptance probability is  λ exp(λa - 12λ2)(2π)1/2[1 - Φ(a)].  This is maximized when  λ =
1
2[a + (a2 + 4)1/2].  As  a → ∞,  λ/a  → 1, and the acceptance probability converges to unity.

Experimentation within the context of the algorithm presently described has shown that the

increase in computing time from using the suboptimal but simpler choice  λ = a, is less than

the time required to compute  12[a + (a2 + 4)1/2].  Hence we use  λ  =  a  in this algorithm.

The algorithm employs four constants (ti, i = 1, .. , 4) whose values have been set

through experimentation with computation time.  The selected value is indicated when the

constant is introduced.  The sampling procedure depends on the relative configuration of  a

and  b,  as follows.  Except in case (1),  a  and  b  are finite.

(1) On (a, ∞):  normal rejection sampling if  a ≤ t4 (= .45); exponential rejection sampling

if  a > t4.

(2) On  (a, b)  if  0 ∈  [a, b]:

(a)  If  φ(a)  ≤  t1 (= .150)  or  φ(b)  ≤  t1:  normal rejection sampling;

(b)  If  φ(a) > t1  or  φ(b)  ≥  t1:  uniform rejection sampling.

(3) On  (a, b)  if  a  >  0:

(a)  If  φ(a)/φ(b)  ≤  t2 (= 2.18):  uniform rejection sampling;

(b)  If  φ(a)/φ(b)  >  t1  and  a  <  t3  (= .725):  half-normal rejection sampling;

(c)  If  φ(a)/φ(b)  >  t1  and  a  ≥  t3:  exponential rejection sampling.

The omitted cases  (-∞, b),  and  (a, b)  with  b < 0,  are symmetric to the cases (1) and (3),

respectively, and are treated in the same way.  Software for the mixed rejection algorithm

was tested by comparing the distributions of sampled variates produced, with those

produced by inverse c.d.f. sampling.  Each was programmed in double precision Fortran-77

using the IMSL/STAT library, on a Sun Sparcstation 4/40 (IPC).  Computation times for

10,000 sampled variates are shown in Table 1.  Times for the inverse c.d.f. algorithm range

from 2.24 to 4.51 seconds, those for the mixed rejection algorithm from 0.67 to 1.28

seconds.  On a case-by-case basis the mixed rejection algorithm is from 2.47 to 6.24 times

faster than the inverse c.d.f. algorithm.
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3.  The Gibbs algorithm for truncated multivariate normal sampling

The central problem addressed in this paper is the construction of samples from an n-

variate normal distribution subject to linear inequality restrictions,

x  ~  N(µ, Σ), a  ≤  Dx  ≤  b. (3.1)

The matrix  D  is  n x n  of rank  n,  individual elements of  a  may be  -∞,  and individual

elements of  b  may be  + ∞.   This accommodates fewer than  n  linearly independent

restrictions.  It does not allow more than  n  linearly independent restrictions, and the

method set forth here cannot be extended to these cases, at least in a tidy way.  In the

applications described in the introduction the truncated multivariate normal distribution

arises in the form (3.1).  The problem is equivalent to the construction of samples from the

n-variate normal distribution subject to linear restrictions,

z  ~  N(0, Τ), α  ≤  z  ≤  β, (3.2)

where

Τ  =  DΣD′,     α  =  a - Dµ,    β  =  b - Dµ,

and we then take  x  =  µ + D-1z.

Several approaches to the solution are possible; see Hajivassiliou and McFadden

(1990, Appendix B) for a brief survey of these methods, and Hajivassiliou, McFadden, and

Ruud (1990) for an application of importance sampling to the special case of orthant

restrictions.   Naive rejection sampling from  N(µ, Σ)  can be employed directly in (3.1), but

is impractical in general since the ratio of rejected to accepted variates is astronomical for

many commonly arising problems.   More sophisticated procedures must cope with the fact

that the marginal distributions of the elements of  z,  and of  x,  are not univariate truncated

normal.  The method set forth here exploits the fact that the distribution of each element of

z,  conditional on all of the other elements of  z,  is truncated normal.  This method has also

been described by Hajivassiliou and McFadden (1990), but as outlined in the introduction

we pursue several extensions here.

The algorithm employed is the Gibbs sampler, whose systematic application to

problems of this form dates from Geman and Geman (1984); see also Gelfand and Smith

(1990).  The general problem is to sample from a multivariate density  f(x) for an n-

dimensional random vector  x, when no practical algorithm is available for doing so directly.

But suppose that the conditional distributions,
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xi | {x1, ... , xi-1,  xi+1, ... , xn}  ~  fi(x1, ... , xi-1,  xi+1, ... , xn) (i = 1, ... , n)

are known, and are of a form that synthetic i.i.d. random variables can be generated readily
and efficiently from each of the  fi(.).  Let  x0′  =  (x1

0, ... , xn
0)  be an arbitrary point in the

support of  f(x).  Generate successive synthetic random variables,

xi
1 | {x1

1, ... , xi-1
1 ,  xi+1

0 , ... , xn
0}  ~  fi(x1

1, ... , xi-1
1 ,  xi+1

0 , ... , xn
0)   (i = 1, ... , n) (3.3)

These  n  steps constitute the first pass of the Gibbs sampler.  The second and

successive passes are performed similarly.  At the i’th step of the j’th pass,

xi
j | {x1

j , ... , xi-1
j ,  xi+1

j-1 , ... , xn
j-1}  ~  fi(x1

j , ... , xi-1
j ,  xi+1

j-1 , ... , xn
j-1),

and the composition of the vector becomes

x(j,i)′  =  (x1
j , ... , xi

j,  xi+1
j-1 , ... , xn

j-1)′

at the end of this step.  At the end of the j’th pass the composition of the vector is

x(j)′  =  (x1
j , ... , xn

j )′.

Gelfand and Smith (1990) have outlined weak conditions under which  x(j)  converges

in distribution and has limiting distribution give by the density  f(x), and the rate of

convergence is geometric in the L1 norm.  These conditions pertain to the truncated

multivariate normal density in (3.2).  The conditional densities  fi(.)  for this problem are

truncated univariate normal, and the algorithm described in the previous section may be used

to generate the required successive synthetic random variables.   Suppose that in the non-

truncated distribution  N(0, Τ),

E[zi | z1, ... , zi-1, zi+1, ... , zn]  =  ∑
j≠i

 
cijzj.

Then in the truncated normal distribution of (3.2), the distribution of  zi  conditional on  {z1,

... , zi-1, zi+1, ... , zn}  has the construction,

zi  =  ∑
j≠i

 
cijzj  +  hiεi,     εi  ~  TN[(αi - ∑

j≠i

 
cijzj)/hi,  (βi -∑

j≠i

 
cijzj)/hi].

Denote the vectors of coefficients in the conditional means,

  ci  =  (ci1, ... , ci,i-1, ci,i+1, ... , cin)′ (i = 1, ..., n).
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From the conventional theory for the conditional multivariate normal distribution (Rao,

1965, p. 441) and expressions for the inverse of a partitioned symmetric matrix (Rao, 1965,

p. 29),
ci  =  -(Τii)-1 Τi,<i,   hi

2  =  (Τii)-1,

where Tii  is the element in row i and column i of  T-1,  and  Ti,<i  is row i of  T-1  with  Tii

deleted.  These computations need only be performed once, before sampling begins.  An

initial value  z(0)  may be selected by setting  z = 0  and then successively applying (3.3) for

i = 1, ... , n.   At the end of each pass we compute  x(j)  =  µ + D-1z(j).

Samples from the truncated multivariate normal distribution are typically used to

estimate the expected value of a function  g(.)  of the random vector  x,
 g−   =  ∫Xg(x)f(x)dx.

An assessment of the reliability of this estimate must take into account the facts that in

general  {x(j)}  is a  serially correlated process, whose unconditional distribution converges

to  f(.)  rather than being identical with  f(.).  These problems are taken up for the general

case in Geweke (1991), where standard spectral analytic techniques are used to produce

diagnostics for the convergence of the sampled distributions to  f(.)  and to provide a

numerical standard error for the reliability of the estimated expected value.   Using this
approach, five statistics from the sample  {x(j)}j=1

p   provide information about the expected

value of the function in question.

(1)The simple arithmetic mean   g−p  =  p-1 ∑
j=1

p
g(x(j))  is the most efficient estimate of g−

from a Gibbs sample of size  p  passes, assuming that departures from convergence in the

sample are negligible.  The function  g(x)  is computed at the end of each pass, following

the transformation from  z  to  x.

(2)  The sampling variance of   g−p  is  Sg(0)/p,  where  Sg(ω)  denotes the spectral

density of the Gibbs-sampled  g(x)  process at frequency  ω.  The numerical standard

error (NSE) of   g−p.  is  [p-1Ŝg(0)]1/2,  where  Ŝg(ω)  is a consistent (in p) estimator of

Sg(ω).

(3)  The variance of  g(.)  is estimated in the same way as the mean of  g(.).  The ratio of

this variance to  Sg(0)  indicates the ratio of the number of i.i.d. draws that would have been

required, were such an algorithm available, to the number of passes required with the Gibbs

sampler, to produce an estimate of  g−  of equivalent reliability.  Following Geweke (1989),

this ratio is called the relative numerical efficiency (RNE) of the Gibbs sampling procedure.
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(4)  A convergence diagnostic (CD) is computed based on subsamples of the sampled

g(x); see Geweke (1991, Section 3.2) for details.  Under a stationary distribution for
{x(j)}j=1

p   this statistic has a standard normal distribution.

(5)  The spectral density provides further details on the characteristics of the process
{g(x(j))}j=1

p .  If the spectral density is nearly flat, or is lower near  ω = 0  than at other

frequencies, then the Gibbs sampling process is efficient relative to i.i.d. sampling.  But if

the spectral density is much higher near  ω = 0  than elsewhere, the process is inefficient.

Thus, there is a correspondence between the shape of the spectral density and the RNE of

the Gibbs sampler.

The Gibbs algorithm was programmed in double precision Fortran-77 using the

IMSL/STAT library, on a Sun Sparcstation 4/40 (IPC).  The routine was tested by

comparing the distribution of truncated normal samples with those generated by a naive

accept/reject procedure.  To provide some indication of the efficiency of the procedure, we

present two examples here.

The first example is a truncated bivariate normal, with parameters chosen so that

convergence ought to be especially slow.  Both variables have mean zero.  The variance of

x1  is 10, while the variance of  x2  is  0.1, and the restrictions are of the form  a1 ≤ x1 + x2

≤  b1,  a2  ≤  x1 - x2  ≤  b2.  Consequently the transformed variables  z1  and  z2  have

correlation .98.  As elaborated in Geweke (1991), this implies that the process  z(j),  and

hence  x(j),  will exhibit strong positive serial correlation: e.g., if  ai = -∞  and  bi  =  +∞,

then  each element of  z(j)  will follow a first order autoregressive process with parameter

.96.  Results are presented in Table 2, which shows the five statistics for five different

configurations of truncation points  (ai, bi),  and for three choices of the number of passes,

p = 400, 2000, or 10,000.  In each case  p  preliminary passes were performed before the

functions of interest  gi(x)  ( i = 1, ... , 4) were computed and averaged over the next  p

passes.  Computation times varied about 20% depending on the  (ai, bi)  configurations,

averaging about .35 seconds for  p = 400  and  7.1 seconds for  p = 10,000.

The results, presented in Table 2, confirm that convergence is slow for the untruncated

normal distribution, panel A.  (This is presented as a limiting case; obviously Gibbs

sampling is not the method of choice for this problem.)  Even when  p  = 10,000, results are

unreliable, as indicated by the convergence diagnostics.  The problem arises from the strong

serial correlation in the processes  {g(x(j))},  which is not fully evident in the estimated

spectral densities for the smaller values of  p;  correspondingly,  computed RNE falls as  p

increases.  These results persist in the second case, in which  z2  is truncated at about 1.5

standard deviations above and below (Panel B), but are not so strong.   In both cases the

convergence diagnostic is an imperfect indicator of unreliable estimates of  g−, for there are
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several cases in which  g−p  is more than three times NSE from 0 (the known true value of  g−

in all cases except D) and yet CD is less than 1.5 in absolute value.  In the third case  z2  is

truncated at about .15 standard deviations above and below (Panel C), and performance is

satisfactory for all values of  p.  The same is true in the fourth case, in which the bivariate

normal distribution is truncated to an extreme tail in both dimensions (Panel D), and in the

fifth case, in which the the truncation produces a distribution closer to uniform than to

bivariate normal (Panel E).  Severe truncation diminishes the potential for strong serial

correlation in the  x(j),  and thereby increases the efficiency of the Gibbs sampler.

The second example is constructed to resemble the truncated multivariate normal

distribution that might be encountered in Bayesian inference with a multivariate probit

model with panel data and serial correlation in equation disturbances for the same sampling

unit and different years.  Assuming three choices, five years, and a first-order autoregressive

process for the disturbance leads to a variance matrix  Σ = R ⊗  I3,  rij =

ρ|i-j|  in a 15-variate normal with truncation restrictions that require one of  x3j+1, x3j+2, and

x3j+3  to be greater than the other two, for  j = 1, ... , 5.  Results are presented in Table 3 for

four different values of  ρ, ranging from  ρ = .00 to  ρ = .95.  The number of passes and

preliminary passes are the same as those in the previous example, and computation times

range from 2.5 seconds for  p = 400  to about 60 seconds for  p = 10,000.  As  ρ  increases,

serial correlation in  z(j)  and  hence  x(j)  increases, diminishing the efficiency and

reliability of the Gibbs sampling algorithm.  The convergence diagnostic proves to be a

reliable indicator of the reliability of the estimates  g−p.  For  ρ = .00, 400 passes are reliable,

despite some modest serial correlation; for  ρ = .50, 2000 passes are required, and for  ρ =

.80, 10,000 passes are required.  For  ρ  = .95,  even 10,000 passes do not produce reliable

results.

4.  The Gibbs algorithm for truncated multivariate Student-t sampling

A closely related problem arising in Bayesian inference is the generation of samples from

the multivariate Student-t distribution subject to linear restrictions,

x ~T(µ, Σ; m), a  ≤  Dx  ≤  b.

We continue to make the same assumptions about  a, b, and D.  The genesis of the

multivariate Student-t as the ratio of a multidimensional normal to an independent

[χ2(m)/m]1/2  leads immediately to a Gibbs sampling algorithm for  (w, z1, ... , zn)  followed

by the construction  x = µ + D-1zw-1.

At the start of pass j,  w(j-1)  and  z(j-1)  are available from the previous pass.  In the

first step draw  w(j)  ~  [χ2(m)/m]1/2  subject to the restrictions
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α iw(j)  ≤  zi
(j-1)   ≤  βiw(j) (i = 1, ... , n),

using an accept/reject procedure.  In steps 2, ... , n+1, draw  z  from a multivariate normal
distribution conditional on  w(j),  the pertinent  z’s,  and the restrictions  αiw(j)  ≤  zi

(j)   ≤
βiw(j):

zi
(j)   =  ∑

j=1

i-1
cijzi

(j)   +  ∑
j=i+1

n
cijzi

(j-1)  +  hiεi,

εi  ~  TN[(αiw(j) - ∑
j=1

i-1
cijzi

(j)  - ∑
j=i+1

n
cijzi

(j-1))/hi,  (βiw(j) - ∑
j=1

i-1
cijzi

(j)  - ∑
j=i+1

n
cijzi

(j-1))/hi)].

At the end of the pass,  x(j)  = µ + D-1z(j)w(j).

This algorithm was programmed in double precision Fortran-77 using the IMSL/STAT

library.  The routine was tested by comparing the distribution of truncated Student-t

samples with those generated by a naive accept/reject procedure.  No appreciable increases

in computation time over corresponding problems with the truncated multivariate normal

distribution were noted.  In particular, the accept/reject procedure for  w(j)  appears quite

efficient, even for  m = 2.  No considerations with respect to the efficiency of the Gibbs

sampling algorithm, beyond those for the multivariate normal, have been noted.

5.  Approximating the truncated multivariate normal integral

In some circumstances it is desirable to evaluate the the integral of the multivariate

normal, or multivariate Student-t, over the region  a ≤ Dx ≤ b.  For example, in Bayesian

inference one may wish to evaluate the posterior probability of a set of restrictions under a

diffuse prior, while simultaneously generating variates from the restricted distribution.  The

estimation of this probability is a ready byproduct of the naive accept/reject procedure,

although this method of estimation becomes impractical for very small probabilities as  does

the the sampling procedure itself.  In the Gibbs sampling algorithm set forth here, the

evaluation of this probability is not an immediate byproduct.  Here, we describe an

augmentation of the Gibbs algorithm that provides estimates of these probabilities.  It entails

a substantial increase in computing time, and thus it is competitive with the naive

accept/reject method for small values of  p.

A heuristic overview of the procedure will help the reader to follow the details.

Consider a small neighborhood about any point in the region  a ≤ Dx ≤ b, of sufficiently

regular shape that its Euclidean volume is known.  The probability of this neighborhood

under the untruncated multivariate normal distribution may is approximately the product of

the normal density at the point and the Euclidean volume of the neighborhood.  The

probability of this neighborhood under the truncated multivariate normal distribution may
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be estimated from the Gibbs sample by the ratio of the number of  x(j)  in the neighborhood

to the number of passes,  p.   Taking the limit as the size of the small neighborhood

diminishes and  p  increases, the ratio of the first probability to the second converges to the

probability of the region  a ≤ Dx ≤ b  under the unrestricted multivariate normal

distribution.

The following algorithm embodies this idea and has been incorporated in the software

described previously.  It assumes several constants, whose values are given parenthetically

as they are introduced.  These constants have been chosen to provide efficient and reliable

estimates of the truncated multivariate normal integral based on experience with several

problems, but there is no well-defined sense in which they are optimal.  How the algorithm

is extended to the multivariate Student-t distribution should be clear; this extension has been

incorporated in the software.
Prior to the computation of the Gibbs sample  {z(j)}j=1

p ,  at most  n* (= 1,000) points

s(1), s(2), ...  are selected using the Gibbs sampling algorithm.  (The fact that these points

are not independent will turn out to be irrelevant.  They could be selected by many other

procedures, but the Gibbs sampler is quick and convenient.)  About each point a

neighborhood of the form  N(s(i)) =  {z: (z-s(i))′Τ -1(z-s(i)) ≤ ri2}  is designated.  The

shape is chosen because of its known Euclidean volume,  πn/2rin|Τ|1/2/Γ(n
2+1) (which the

reader may verify), and because the orientation of its axes parallel to those of the  N(0, Τ)

distribution then minimizes the variation in the value of the corresponding density over the

neighborhood.   The radius  ri  is chosen so that two criteria are satisfied.  First, the ratio of

the highest to the lowest value of the density should not exceed  c* (= 1.2).  This implies  ri
= qi1/2(1 - ai), with  ai = [1 + (c/qi)]1/2,  qi = s(i)′Τ-1s(i),  and  c = 2log(c*). Second, the

neighborhood should lie entirely within the set  α  ≤  z  ≤  β, equivalent to the  2n

constraints   (α j - sj
(i))Τjj  ≤  ri2,  (βj - sj

(i))Τ jj  ≤   ri2.  If necessary the value of  ri  is

reduced to satisfy these constraints. After  ri  is chosen the approximate probability of the
neighborhood under the multivariate normal distribution, vi = 2-n/2rinexp(-1

2z′Τ-1z)/Γ(n
2+1),

is recorded.   The construction of points and neighborhoods stops when  i = n*  or the sum

of the  vi  exceeds  v* (= 10.0), whichever comes first.  Let  v+  denote the final sum of the

vi.
As the Gibbs sample proper,  {z(j)}j=1

p ,  is constructed, each point  z(j)  is checked to

see whether or not it is within each neighborhood.  A running total of the number of times a

point lies in a neighborhood is maintained; for each point  z(j),  the total is increased by the

number of neighborhoods in which that point lies.  Let  ñ  denote the value of the running

total at the end of the  p  passes.  Then the estimated value of the multivariate normal integral

N(0,  Τ)  over the region  α  ≤  z  ≤  β  is  pv+/ñ.
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Experimentation with this algorithm has produced probability estimates within .01

of the true value, where the true value has been computed analytically in simple cases or

estimated by naive accept/reject methods when analytical computations are not possible, and

the true probability is between .2 and .8.  For smaller values of the true probability accuracy

appears to be much better.  A numerical standard error that measures the variability in

pv+/ñ  due to   ñ  may be constructed, but this would not reflect the approximation error due

to  c* > 1  and the consequent bias in  v  as computed.  These questions are left for future

research.
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