
gg-GP
Rob McCulloch

November 13, 2019

Griddy Gibbs Inference for Gaussian Process Parameters

Read 15.1 to 15.2.5 (inclusive) of “Machine Learning, A Probabalistic Perspective” by Kevin Murphy.
You can find pdf on the internet.

The goal is to use simple Gibbs sampling to infer the parameters of a simple Gaussian Process model.

Our model is
yi = f(xi) + εi

To keep things simple let’s assume xi ∈ R.

where εi ∼ N(0, σ2
y) and

(f(x1), f(x2), . . . , f(xN ))′ ≡ f(x) ∼ N(0,K), Kij = κ(xi, xj).

Then,
Y |x ∼ N(0,Ky), Ky = K + σ2

y I.

Now let κ depend on some parameters so that we have κ(xi, xj ; γ) and hence

Ky = K(γ) + σ2
y I.

The example in Murphy is
κ(xi, xj ;σf , l) = σ2

f exp(− 1
2l2 (xi − xj)2)).

so γ = (σf , l).

Letting θ = (γ, σy) We have
Ky(θ) = K(γ) + σ2

y I.

Then Y |x ∼ N(0,Ky(θ)) and

log(p(y |x, θ)) = −1
2y
′Ky(θ)−1y − 1

2 log(|Ky(θ)|)− N

2 log(2π).

which is Equation 15.2.2 of Murphy.

Now the idea of the project is :

• use lines 1,2, and 6 of Algorithm 15.1 in Murphy to compute log(p(y |x, θ)).
• use a simple grid of values for each element of θ.
• use something like the Griddy Gibbs sampler to obtain posterior inference for θ.
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That is, fix all of the elements of θ but one: θ = (θi, θ−i). Fix θ−i and then evaluate

log(p(θi | θ−i, y)) ∝ log(p(y |x, θ)) + log(p(θ))

on a grid of values for θi. Here p(θ) is the prior.

Alternatively, you could use a simple MH step instead of the griddy Gibbs for the each θi.

Note, Algorithm 15.1 just says that to compute log(p(y |x, θ)) let L be the Cholesky root of Ky(θ).

Then use the Cholesky to compute |Ky(θ)| and Ky(θ)−1y ≡ α.

That is, If Ky = LL′, then

α = K−1
y y = (LL′)−1y = (L−1)′L−1y.

and
log(|Ky|1/2) =

∑
log(Lii).

Use real and simulated data to see how your procedure works.
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