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Computational Statistics, A Suggested Project

We have looked at mixture modelling using the EM algorithm.
Let’s see how we can use MCMC.
Here is our model,

The variable I; is the latent variable indicated which mixture component the i*” observation comes from.
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Each mixture component is N (p;,07).
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Given the means p and standard deviations o, and the mixture component for the i*” observation, we know
the distribution of Y;.
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To specify a full Bayesian model we need to put piors on p, u, and o.
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p = (p1,p2,...,pk) ~ Dirichlet(a)

The Gibbs sampler is:
plL, Ilpo.py, ploly, olply

where,

e the draw of p is a Dirichlet

e the draw of each I; is an independent multinomial

o the draw of each y; is an independent normal

 the draw of each o; is an independent inverted chi-squared.

Project:

« read (don’t worry about getting everything) Chapter 22 of “Bayesian Data Analysis”*, third Edition,
by Gelman et. al.

e code up the EM algorithm for the mixture model

e code up the Gibbs sampler

e compare EM with Gibbs on real and simulated data.



cad = read.csv("http://www.rob-mcculloch.org/data/calhouse.csv")
par (mfrow=c(1,2))

hist(cad$latitude,nclass=200)

hist(cad$longitude,nclass=200)
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