Outline

The Metropolis Algorithm
Random Walk Metropolis
Independence Proposal

The Log Normal Prior for o
Metropolis within Gibbs

Regresssion with the Log-normal Prior

The Metropolis Algorithm

Hierarchical modeling allows us to construct complex models out
of simple pieces.

The Gibbs sampler then allows us to draw the posterior of each
“piece” conditional on the rest.

It is often convenient to structure the model (in particular the
choice of prior) so that the conditionals are “conditinally
conjugate”.

The draws are then made using standard families of distributions.

Sometimes our modeling problem just does not lend itself to the
conjugate structure.

In this case we need simple yet broadly applicable methods for
drawing from a distribution only being able to compute (typically)
the posterior up to a proportionality constant.

For example, we could use a grid.
Drawing the conditionals using a grid is known as the “griddy
Gibbs sampler”.

The Metropolis-Hastings algorithm is a general approach for
drawing from a distribution when we can compute the density up
to a proportionality constant.

Our basic formula often allows us to do this:

p(0 | y) o f(y | 0) p(0).

To compute a conditional we have

p(61 | 02,y) o< p(01,02 | y) o f(y | 0) p(F).

The MH is a Markov Chain Monte Carlo method in that rather
than generating iid draws, it is a method for construction a Markov
chain such that the stationary distribution is the one we want to
draw from.

The algorithm works as follows.

(i)
We can an compute p(6) o f(#), where f is the density (or mass
function in the discrete case) we wish to draw from.

(i)
We specify a markov chain definied by the transition kernel
q(Oes1 | 0:).

(iii)
We construct a new Markov chain using g and p.

Suppose we are currently at 6;.

(1) draw 6 ~ q(0 | 6;).

_in J1 P(©)a(6: | 0)
“= {1’p(et)q(6\ef)}

(2) Compute

(3)

With probability o, 0:11 = 0, else 0:11 = 6.

Notes:

(i)

The MH modifies the proposal chain g by repeating some values.

(ii)
The intuition behind p(0)/p(6;) is clear, if the proposed 6 is more
likely under the target distribution than the current 6; then maybe

be should go there.

(iii)

The g(0: |) on the top says it is ok to go if we can get back.
(iv)

The g(@ | 0¢) on the bottom says if it is hard to get there then we
had better take advantage of this opportunity.

Random Walk Metropolis

To use the MH, you have to pick gq.

A common choice is for g to be a random walk:
0=0;+¢
where € is draw iid from a specified density g(€). In this case
q(0 | 0:) = (0 — 0¢).

If g is symmetric (g(e) = g(—¢)) then g(6 | 6:) = q(6: | 6) so that

-]

The code below uses the random walk MH to draw from the
standard normal. The proposal is the current value plus normal
“error”.

set.seed(99)
nd = 10000 #number of MH iterations (draws)
td = rep(0,nd) # storage for theta draws
sigma = .5 #q: theta_{t+1} = \theta_t + sigmax*Z
for(t in 2:nd) {
theta = td[t-1] + sigma*rnorm(1)
alpha = min(1,dnorm(theta)/dnorm(td[t-1]))
if (rbinom(1,1,alpha)) {
td[t] = theta
} else {
td[t] = td[t-1]

}

Here is a look at the draws (td).

On left is the normal QQ-plot and on right is the first 100 draws.

Normal Q—-Q Plot

0=
B
— 8
-8
g 5°°
© == o0 —
-D‘\\o\m
Y
g B
B o
0520
0o —230,
g—=° "
° 8
m\m
o—= 0o
=3
_o— 87
8o,
—
8 — ¢
_ o—o— °
028
%o
T T T T T T T
ST 0T S0 00 S0- ST-
[oot:TIM
o
s
Da
o
T T T T T T
€ ¢ 1T 0 1I- ¢- ¢€-

sa|nuend sjdwes

40 60 80 100

20

Index

Theoretical Quantiles

The role of o

If o is too small, we make a lot of small moves that are accepted.
If o is too big, then we make bigger moves, but some are rejected.

e g
- r —
3 A RTINS o |
=
1 \]
g SRR i
B o % om0 wl ‘ L1 :
3 05 %1 ~
! T T T T T T ? T T T T
0 20 40 60 80 100 0 5 10 15 20
sigma=.1 sigma=.1
e
~ -

1
Lol
4
8
—_—
8
_
B“a
_
o3
8
13
0.6
TR B

o© 3 o
< = ® TN oo b R I I
[o —]
\/ ’ \ J \ (1,
o | ¥ ‘ T T
\ \ o
T T T T T T ? T T T T T
0 20 40 60 80 100 0 5 10 15 20

sigma=3.0 sigma=3.0

Independence Proposal

The other very popular proposal is iid draws.

q(Oe+1 | 0:) = g(0e41).
Every proposal is just drawn independently from g.

This gives:

—

where w(6) = %.

~

Here is code to use the Metropolis algorithm to draw from the
standard normal using a N(0, 02) independence proposal.

set.seed(99)
nd = 10000 #number of MH iterations (draws)
td = rep(0,nd) # storage for theta draws
sigma = 2.0 #q: theta_{t+1} = sigmaxZ
for(t in 2:nd) {
theta = sigma*rnorm(1)
thetat = td[t-1]
wtop=dnorm(theta) /dnorm(theta,sd=sigma)
wbot=dnorm(thetat)/dnorm(thetat,sd=sigma)
alpha = min(1,wtop/wbot)
if (rbinom(1,1,alpha)) {
td[t] = theta
} else {
td[t] = td[t-1]
}

Here is a look at the draws (td).
On left is the normal QQ-plot and on

Normal Q—-Q Plot

Sample Quantiles
0
1
td[1:100]

-4
L

Theoretical Quantiles

right is the first 100 draws.

Index

The role of o:

If o is too small, we need to really build up the tails by repeating
draws.
If o is too big, we need to repeat in the center to build that up.

-1.5 -05 05

1

T b J

&’-A ﬂt’-}j IEM’L’-IU@E! iE MHHHH”“
e

) _:pji'"lr- ! d. | ;,Lulx

The Log Normal Prior for o

The standard inverted-y? prior for a normal variance has some
drawbacks.

For small v the right tail is extreme and the left tail has a
“dead-area”.

An obvious alternative prior is the log-normal:

0 = log(0) ~ N(pg,3)-

We could work with either 6 or o.
Let's use 6.

So,

and our model is:

ei ~ N(0, (e)?), iid, 0 ~ N(pg,07).

Here we assume we observe the ;.

This function computes the log of the posterior at given data e
and prior with mean mt and standard deviation st (uy = mt,
og=st).

lpost = function(theta,e,mt,st) {
#compute log posterior for e_i ~ N(O,exp(theta)”2), theta ~ N(mt,st"2)
n=length(e)

sigma = exp(theta)

s2 = sigmaksigma

S = sum(e”2)

11ik = -nxtheta -.5%S/s2

z = (theta-mt)/st

lpri = -log(st) -.5%z*z
return(1lik+lpri)

}

Simulate some data and draw from the prior.

#simulate data

sigma = .5

nd=100

set.seed(99)

eps = rnorm(nd,sd=sigma)

#prior, theta ~ N(mt,st"2)

mt = log(sigma) #cheat by using true value

st = .2

sdpri = exp(rnorm(10000,mt,st)) #draws from prior

Draw from the posterior using a grid.

Lg = log(.1); Ug = log(1l) #lower and upper end points of grid
ng = 100 # number of grid points
tg = seq(from=Lg,to=Ug,length.out=ng) #the grid

1p = rep(0,ng) #store evaluations of log post on the grid
for(i in 1:ng) 1p[i] = lpost(tgl[il,eps,mt,st)

lp = lp-max(lp)

postv = exp(lp); postv = postv/sum(postv)

sdpos = exp(sample(tg,size=10000,replace=T,prob=postv))

Draw from the posterior using random walk Metropolis.

sprop = .1 #standard deviation for q
nd=10000
td = rep(0,nd)
td[1] = log(sigma) # start at true value
oldlp = lpost(td[1],eps,mt,st)
for(t in 2:nd) {
theta = td[t-1] + sprop*rnorm(1)
newlp = lpost(theta,eps,mt,st)
rat = exp(newlp-oldlp)
alpha = min(1,rat)
if (rbinom(1,1,alpha)) {
td[t] = theta; oldlp = newlp
} else {
td[t] = td[t-1]

}
}
td = exp(td)

Plot results.

(1,1): draws from prior, (1,2): qqgplot of grid draws vs

(2,1): hist of grid draws , (2,2): hist of MH draws.

Histogram of sdpri

uuuuu

8.
g1
sssss
Histogram ofsipos
g4
g g |

sssss

. MH draws

Metropolis within Gibbs

Many Bayesian applications use both the Gibbs sampler and the
MH.

Suppose we have the simple Gibbs structure:

01162y, 62]61,y.

We could, for example, replace the draw of 6> with an iteration of
a MH Markov chain having stationary distribution p(62 | 61, y)
where the value of 0y is simply our current value. We also use the
current value of 6> in the MH chain.

Note:

Let's trace through MH within Gibbs to make sure the joint
posterior is the stationary distribution of the Markov Chain.

Suppose (6%, 0%) is a draw from p(601, 0> | y).
Replace 0% with a draw from 61 ~ p(6; | 6%, y).
Then (911 0%) is still a draw from p(61,62 | y).
|65 y).

Now draw 95“ using a Markov chain (eg MH) having stationary
distribution p(f2 | 01, y) and previous value 65.

So, 65 is a draw from p(62

Then 05 is a draw from p(6a | 0511, y).

Then (011 05%1) is a draw from p(61,62 | y).

Using the same logic, we can see that we can replace a draw from
any conditional in a Gibbs setup with an iteration of an Markov
chain having the conditional as its stationary distribution.

More generally, we can combine different chains in different ways.

Example:

We can use mixtures of Markov Chains.
We have Markov chains My and M.
That is, we can draw 0;11 ~ M;(6;).

We can make up a new mixture Markov chain
I\/I:al\/ll+(1—a)/\/12.

This means with probability o draw using My, otherwise draw
using M.

Regresssion with the Log-normal Prior

Let's write an MCMC for the model:
Y = XB+ €, ~ N0, (e)?1),

B~ N(B,ATY), 0~ N(ug, 7).

We'll draw (3 | 0 and 6 | 3 and use the MH to draw 6.

First, let's slightly rewrite the log-likelood function to depend only
on the sufficient statistics since we don't want to compute these
more often than we have to.

lpostS = function(theta,S,n,mt,st) {

#compute log posterior for e_i ~ N(O,exp(theta)”2), theta ~ N(mt,st"2)
#S = sum(e~2)

#n = length(e)

11ik = -nxtheta -.5*S¥exp(-2*theta)

z = (theta-mt)/st

lpri = -log(st) -.5%z*z

return(1lik+lpri)

}

Now we write the MH draw of 6 = log(c) as a function.

dtheta = function(thetao,e,mt,st,tau) {
#function to do MH draw of theta = log(sigma)
#thetao: previous value
#eps: data eps_i "N(0,\sigma”2), sigma = exp(theta)
#mt,st: theta ~ N(mt,st"2)
#tau: q is theta_{t+1} = theta_t + tau Z
S = sum(e~2)
n = length(e)
theta = thetao + tau*rnorm(1)
oldlp = lpostS(thetao,S,n,mt,st)
newlp = lpostS(theta,S,n,mt,st)
rat = exp(newlp-oldlp)
alpha = min(1,rat)
if (rbinom(1,1,alpha)) {
return(theta)
} else {
return(thetao)

}
}

Now we write the 3 | o draw as a function.

dbeta = function(n,xty,xtx,Ab,A,sigma) {
#draw beta | sigma

#n: number of obs

#xty: X'y, xtx: X’X

#beta ~ N(b,A"{-1})

p=length(xty)

V = solve(xtx/sigma™2 + A)

m =V %*), (xty/sigma”2 + Ab)

L = t(chol(V))

return(m+L %*% matrix(rnorm(p),ncol=1))

}

#simulate data

set.seed(99)

n=10

x=rnorm(n)

X = cbind(rep(1,n),x)

sigma = 1

beta=c(1,2)

y = X %*), beta + sigma*rnorm(n)
xty = t(X) %% y

xtx = t(X) %*% X

#choose prior
b=rep(0,2)
A=diag(rep(.1,2))
Ab = A Yx% b

mt = 0; st=.2

#run MCMC

nd = 5000

td = rep(0,nd) #draws of theta

bd = matrix(0.0,nd,ncol(X)) #draws of beta (rows)
bd[1,]=beta

tau = .1

for(t in 2:nd) {

e =y - X %*% bd[t-1,]

td[t] = dtheta(td[t-1],e,mt,st,tau)
bd[t,] = dbeta(n,xty,xtx,Ab,A,exp(td[t]))

}

Here is a plot of the results with n=100 and set.seed(99).

20 40 60 80 1000 1200 1400

F

09 10 2 3
explneta)
g
g |
g
2 g
06 08 o 12 6 8 20 2 2

	The Metropolis Algorithm
	Random Walk Metropolis
	Independence Proposal
	The Log Normal Prior for
	Metropolis within Gibbs
	Regresssion with the Log-normal Prior

