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Logistic Regresssion



Consider the linear regression model with iid normal errors:
Y =XB4e e~ N0, %)

We know how to get the least squares estimate of 3 which is also the mle.

We solve the equations:

X'(Y = XB) =0

We can solve these equation direclty using 3 = (X'X)~1X"Y or use the
cholesky decomposition of X’X or the QR decomposition of X.



We have also learned how to do a Bayesian analysis of the linear model
using the normal prior for 8 and the inverted chi-squared prior for o and
the Gibbs sampler:

ﬁ|a’7(Y,X), U|67(YvX)



Perhaps after linear regression, the most fundamental model in applied
statistics is logistic regression.
We want to use linear methods, but now are response is binary: y € {0,1}.

For a single (x, y) observation we have

P(Y =1|x,8) = F(x'B), F(n)= 1e+X:x(22n)

How do we compute the mle???

How do we do a Bayesian analysis



Newton's Method



Newton's method is a very basic method in optimization.

We will use it to compute the logit mle, and the Bayesian posterior mode.

Suppose f : 8 — R, B € RP.

We want to minimize (or maximize) f.



We will need the first derivative:

F(5) = v = 1 G

and the second derivative:

()
0Bi0p;

F1(8) =1 ]

» the first derivative is called the gradient vector. My convention is that
it isa 1 x p row vector.

» the second derivative is a p X p symmetric matrix. It is called the
Hessian.



Newton's Method

Newton's method is iterative.

Let 5; the value at iteration i.

» approximate f at 8; by a quadratic using Taylors's theorem.
> optimize the quadratic: the solution is §;11.

> repeat until converged.



Taylor approximation:

() ~ F(8) = F(5) + F/(5)(B — Bi) + 58— B F"(5)(6 — 1)

Now to optimize the quadratic, we compute its gradient and set it equal to
0.

VEB) = £'(8:) + (8~ B:)'F"(8)
We can solve V?(ﬂ) = 0 with
0="f"(Bi)+(B—pi)f"(Bi)
N = B - 5
B =B — (B (B!

Bivr = Bi = [F" (B (B



Logit Log-Likelihood Derivatives: The Logit
MLE



We will compute the first and second derivatives of the logit log likelihood.

First, we differentiate F(n) = 12‘;(;8]):

(14 em)e” — een

F’("7) = (1+em)?

= F(n)(1 = F(n))




The Likelihood

L(B) = JT FOi) (1= Fgg) ™)
Let F; = F(x/8).
log L(B) = Zy, log(F; (1—yi)log(l—F)
log L'(B) = ZY;X{LTF;) +x/(1—y)[- F(iil__,_-i:)i)]

= Z[YI (1-F)—x (1 — yi)Fi]
:ZXI Yi — :

=(y-F'X




log L"(8) = = > xix{Fi(1 - F;)
— —X'DX

where,

D = diag(Fi(1 — F;))



So, to compute the logit mle:

Biv1 = Bi — [-X'DX]7'X'(y — F)
= B+ [X'DX] ' X'(y — F)



Iteratively Reweighted Least Squares



Recall weighted least squares

Y=X8+¢ e~ N(0,X)

then,

B _ (X/zflx)flxlzfly



It may be helpful to rewrite the Newton iteration as a series of weighted
regressions:

Let Y1 =D and

Z=XBi+D Y (y—F)

then,
(X'ZIX)IX'EZ = (X'E1X) XS 1(XBi + D~y — F))
= B; + [X'DX]"1X'(y — F)

Hence doing an iteratively (re)weighted least squares problem (IRLS) gets
you the mle.



Optimization and Convexity /Concavity



Recall that a function is convex if

flaxi + (1 — a)x) < af(x) + (1 — a)f(x), a€]0,1].

and concave if it goes the the other way,

flaxi + (1 — a)x) > af(x) + (1 — @)f(x), a€]0,1].



Key:

If a function is convex then it has a unique global minimum and any local
miniumum is the local minimum.

Same for concave and maximum.

Key:

If the Hessian is positive definite everywhere, then the function is convex.

Same for negative definite and concave.



#[-X'DX]a = —v'Dv = = 3 v}Fi(1 - F) <0.

Hence the logit loglLikelihood is concave, hence Newton will converge to a
global max.



Bayesian Posterior Mode



We can use a very similar approach to compute the Bayesian posterior
mode given a mulitvariate normal prior for 5.

Let _
p(B) ~ N(B,A™H).
Then,
p(B1X,Y) < L(B) p(B)
and

log p(B| X, Y) = log L(B) + log(p())



1

log(p(8)) = C = 5(B— BYA(B - B) = C +g(h)

gB)=—(B-PA g"(B)=-A

So the Newton iterations become:

Biyr = Bi + [X'DX + A7 X (y — F) — A(B; — B)]

where D and F also depend on f3;.



Note:

Maximizing the log posteior is equivalent to minimizing

~log L(8) + 5(8 —~ BY A - )

If we let A= A/, B =0,and recall that — log L(3) is the deviance which is
also called the cross-entropy loss then we minimize

Loss(y, ) + Al|II?

Thus the Bayesian posterior mode can be viewed as an L2 regularized
estimate of the coefficient vector.
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