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Logistic Regresssion



Consider the linear regression model with iid normal errors:

Y = X β + ε, ε ∼ N(0, σ2I)

We know how to get the least squares estimate of β which is also the mle.

We solve the equations:

X ′(Y − Xβ) = 0

We can solve these equation direclty using β̂ = (X ′X )−1X ′Y or use the
cholesky decomposition of X ′X or the QR decomposition of X .



We have also learned how to do a Bayesian analysis of the linear model
using the normal prior for β and the inverted chi-squared prior for σ and
the Gibbs sampler:

β |σ, (Y , x), σ |β, (Y ,X )



Perhaps after linear regression, the most fundamental model in applied
statistics is logistic regression.

We want to use linear methods, but now are response is binary: y ∈ {0, 1}.

For a single (x , y) observation we have

P(Y = 1 | x , β) = F (x ′ β), F (η) = exp(η)
1 + exp(η) .

How do we compute the mle???

How do we do a Bayesian analysis



Newton’s Method



Newton’s method is a very basic method in optimization.

We will use it to compute the logit mle, and the Bayesian posterior mode.

Suppose f : β → R, β ∈ Rp.

We want to minimize (or maximize) f .



We will need the first derivative:

f ′(β) = ∇f (β) = [∂f (β)
∂β1

,
∂f (β)
∂β2

, . . . ,
∂f (β)
∂βp

]

and the second derivative:

f ′′(β) = [∂
2f (β)
∂βi∂βj

]

I the first derivative is called the gradient vector. My convention is that
it is a 1× p row vector.

I the second derivative is a p × p symmetric matrix. It is called the
Hessian.



Newton’s Method

Newton’s method is iterative.

Let βi the value at iteration i .

I approximate f at βi by a quadratic using Taylors’s theorem.

I optimize the quadratic: the solution is βi+1.

I repeat until converged.



Taylor approximation:

f (β) ≈ f̃ (β) = f (βi ) + f ′(βi )(β − βi ) + 1
2(β − βi )′f ′′(βi )(β − βi )

Now to optimize the quadratic, we compute its gradient and set it equal to
0.

∇f̃ (β) = f ′(βi ) + (β − βi )′f ′′(βi )

We can solve ∇f̃ (β) = 0 with

0 = f ′(βi ) + (β − βi )′f ′′(βi )

−f ′(βi )[f ′′(βi )]−1 = β′ − β′i
β′ = β′i − f ′(βi )[f ′′(βi )]−1

βi+1 = βi − [f ′′(βi )]−1[f ′(βi )]′



Logit Log-Likelihood Derivatives: The Logit
MLE



We will compute the first and second derivatives of the logit log likelihood.

First, we differentiate F (η) = exp(η)
1+exp(η) :

F ′(η) = (1 + eη)eη − eηeη

(1 + eη)2 = F (η)(1− F (η))



The Likelihood

L(β) =
n∏

i=1
F (x ′i β)yi (1− F (x ′i β))(1−yi )

Let Fi = F (x ′i β).

log L(β) =
∑

yi log(Fi ) + (1− yi ) log(1− Fi )

log L′(β) =
∑

yix ′i
Fi (1− Fi )

Fi
+ x ′i (1− yi )[−Fi (1− Fi )

(1− Fi )
]

=
∑

[yix ′i (1− Fi )− x ′i (1− yi )Fi ]

=
∑

x ′i (yi − Fi )

= (y − F )′X



log L′′(β) = −
∑

xix ′i Fi (1− Fi )

= −X ′DX

where,

D = diag(Fi (1− Fi ))



So, to compute the logit mle:

βi+1 = βi − [−X ′DX ]−1X ′(y − F )
= βi + [X ′DX ]−1X ′(y − F )



Iteratively Reweighted Least Squares



Recall weighted least squares

Y = Xβ + ε, ε ∼ N(0,Σ)

then,

β̂ = (X ′Σ−1X )−1X ′Σ−1y



It may be helpful to rewrite the Newton iteration as a series of weighted
regressions:

Let Σ−1 = D and

Z = Xβi + D−1(y − F )

then,

(X ′Σ−1X )−1X ′Σ−1Z = (X ′Σ−1X )−1X ′Σ−1(Xβi + D−1(y − F ))

= βi + [X ′DX ]−1X ′(y − F )

Hence doing an iteratively (re)weighted least squares problem (IRLS) gets
you the mle.



Optimization and Convexity/Concavity



Recall that a function is convex if

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2), α ∈ [0, 1].

and concave if it goes the the other way,

f (αx1 + (1− α)x2) ≥ αf (x1) + (1− α)f (x2), α ∈ [0, 1].



Key:

If a function is convex then it has a unique global minimum and any local
miniumum is the local minimum.

Same for concave and maximum.

Key:

If the Hessian is positive definite everywhere, then the function is convex.

Same for negative definite and concave.



a′[−X ′DX ]a = −v ′Dv = −
∑

v2
i Fi (1− Fi ) ≤ 0.

Hence the logit logLikelihood is concave, hence Newton will converge to a
global max.



Bayesian Posterior Mode



We can use a very similar approach to compute the Bayesian posterior
mode given a mulitvariate normal prior for β.

Let
p(β) ∼ N(β̄,A−1).

Then,
p(β |X ,Y ) ∝ L(β) p(β)

and

log p(β |X ,Y ) = log L(β) + log(p(β))



log(p(β)) = C − 1
2(β − β̄)′A(β − β̄) ≡ C + g(β)

g ′(β) = −(β − β̄)A, g ′′(β) = −A.

So the Newton iterations become:

βi+1 = βi + [X ′DX + A]−1[X ′(y − F )− A(βi − β̄)]

where D and F also depend on βi .



Note:

Maximizing the log posteior is equivalent to minimizing

− log L(β) + 1
2(β − β̄)′A(β − β̄)

If we let A = λI, β̄ = 0,and recall that − log L(β) is the deviance which is
also called the cross-entropy loss then we minimize

Loss(y , β) + λ||β||2

Thus the Bayesian posterior mode can be viewed as an L2 regularized
estimate of the coefficient vector.
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