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Time-Varying Coefficients

Recall the hotels example where we regressed mothly observations
of one hotel's occupancy rate on the overall downtown Chicago
occupancy rate:




Here is the time series plot of the residuals.

residuals




The trend line is fit to the residuals using
n=a+p0t+e

The hotel might argue that, based on the plot, there could be
some doubt about this simple specification.



To think about a more general model let

rt:9t+€t

The trend model uses the very “tight” specification:

9t2a+,6t.



We could be more flexible by transforming t:

0, =a+ Bt+~t2

Clearly we have to impose some kind of “restriction” on the {6;}.

We do not what the “perfect” fit: r, = 0;.

But how can we avoid the nuisance of picking the transformations?



We can put a random-walk prior on the {6;}:

0r = 0,1 + Wi, W~ N(O, W?).

If we pick W “small”, then we can say each the 6; can be
anything, but successive ones cannot be too different.



Our model (for the residuals) is:

P60, 6. r) = p(8) p(8 | 60) p(r | 0),

where

9:(91792,~--79T)7 r:(rlar27"'7rT)7

and,

p(0 ] 60) =Ny p(b: | 6c1), pl(r|6) =Ny p(re | 62).



Using FFBS (forward filtering, backward sampling)
we can get draws:

(60,0) | r.

| ran FFBS and got a nd x T matrix where each row is a draw of 6.



blue: median of {6} draws.
green: 25% and 75% quantiles of {6;} draws.
red: 5% and 95% quantiles of {6} draws.

W= 4 W= 1

occ rate
occ rate




We can write a comprehensive model for the hotel data
(rather than just the residuals):

Hy =0 + BCe + ve, ve ~ N(O, V).
Qt - et_l + Wt7 Wt ~ N(O, W)

With priors:
p(6o), p(B), p(V), p(W).
and draw:
(60,6) |
B
Vo
w |
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We can think of this as a time-varying parameter model.

We can start with
Ht:9+ﬂCt—|—vt,

and then let the intercept vary over time.

It is also very common to let the slope vary over time.

11



State Space Models

We observe a time series {X;}.

We imagine that the distribution of X; depends on some

unobserved “latent” state 6; which is evolving over time.

Our model consists of the observation equation:

p(Xf ’ 9t)7

and the state equation:

P(et | 9t—1)~

In addition, we need a prior on the initial state: p(fp).
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The general picture:

6> 6,-> 0,—> . 6.,—> 6,—-> 0,
2 \2 2 \2 2
Xl X2 X!—l Xl XHl

Each X is a "peek" at the corresponding 6.

If you margin out the 6's get a model in which
future X's depend on past X's.
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