
Statistics 333 Cp, AIC, and BIC Spring 2003

There is a discrepancy in R output from the functions step, AIC, and BIC over how to compute the AIC. The
discrepancy is not very important, because it involves a difference of a constant factor that cancels when using AIC
or BIC to compare two models. But it might be helpful to understand the differences so that you can compare
output from these two functions.

AIC and BIC are based on the maximum likelihood estimates of the model parameters. In maximum likelihood,
the idea is to estimate parameters so that, under the model, the probability of the observed data would be as
large as possible. The likelihood is this probability, and will always be between 0 and 1. It is common to consider
likelihoods on a log scale. Logarithms of numbers between 0 and 1 are negative, so log-likelihoods are negative
numbers. It is also common to multiply log-likelihoods by −2, for reasons we will not explore.

In a regression setting, the estimates of the βi based on least squares and the maximum likelihood estimates
are identical. The difference comes from estimating the common variance σ2 of the normal distribution for the
errors around the true means. We have been using the best unbiased estimator of σ2, σ̂2 = RSS/(n − p) where
there are p parameters for the means (p different βi parameters) and RSS is the residual sum of squares. This
estimate does not tend to be too large or too small on average. The maximum likelihood estimate, on the other
hand, is RSS/n. This estimate has a slight negative bias, but also has a smaller variance.

Putting all of this together, we can write −2 times the log-likelihood to be

n+ n log(2π) + n log(RSS/n)

in a regression setting. Now, AIC is defined to be−2 times the log-likelihood plus 2 times the number of parameters.
If there are p different βi parameters, there are a total of p+1 parameters if we also count σ2. The correct formula
for the AIC for a model with parameters β0, . . . , βp−1 and σ2 is

AIC = n+ n log 2π + n log(RSS/n) + 2(p+ 1)

and the correct formula for BIC is

BIC = n+ n log 2π + n log(RSS/n) + (log n)(p+ 1)

This is what the functions AIC and BIC calculate in R. The AIC and BIC formulas in your textbook ignore the
leading two terms n + n log 2π and use p instead of p + 1. When comparing AIC or BIC between two models,
however, it makes no difference which formula you use because the differences will be the same regardless which
choice you make.

> case1201 = read.table("sleuth/case1201.csv", header = T, sep = ",")

> attach(case1201)

> keep <- STATE != "Alaska"

> x <- data.frame(SAT = SAT[keep], ltakers = log(TAKERS[keep]),

+ income = INCOME[keep], years = YEARS[keep], public = PUBLIC[keep],

+ expend = EXPEND[keep], rank = RANK[keep])

> detach(case1201)

> attach(x)

Example Computation in R AIC is part of the base package. You can find the BIC using the AIC function
with the option k = log(n), or, you can load the nonlinear mixed effects library and call the BIC function directly.
Here is an example that demonsrates the above ideas.

> library(nlme)
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Loading required package: nls
Loading required package: lattice
Loading required package: grid

> n <- nrow(x)

> fit0 <- lm(SAT ~ 1)

> summary(fit0)

Call:
lm(formula = SAT ~ 1)

Residuals:
Min 1Q Median 3Q Max

-158.45 -59.45 19.55 50.55 139.55

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 948.45 10.21 92.86 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 71.5 on 48 degrees of freedom

> rss0 <- sum(residuals(fit0)^2)

> n + n * log(2 * pi) + n * log(rss0/n) + 2 * 2

[1] 560.4736

> AIC(fit0)

[1] 560.4736

> n + n * log(2 * pi) + n * log(rss0/n) + log(n) * 2

[1] 564.2573

> AIC(fit0, k = log(n))

[1] 564.2573

> BIC(fit0)

[1] 564.2573

> fit1 <- lm(SAT ~ ltakers)

> summary(fit1)

Call:
lm(formula = SAT ~ ltakers)
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Residuals:
Min 1Q Median 3Q Max

-93.328 -21.380 4.154 22.614 50.794

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1112.408 12.386 89.81 <2e-16 ***
ltakers -59.175 4.167 -14.20 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 31.41 on 47 degrees of freedom
Multiple R-Squared: 0.811, Adjusted R-squared: 0.807
F-statistic: 201.7 on 1 and 47 DF, p-value: < 2.2e-16

> rss1 <- sum(residuals(fit1)^2)

> n + n * log(2 * pi) + n * log(rss1/n) + 2 * 3

[1] 480.832

> AIC(fit1)

[1] 480.832

> n + n * log(2 * pi) + n * log(rss0/n) + log(n) * 3

[1] 568.1491

> AIC(fit1, k = log(n))

[1] 486.5075

> BIC(fit1)

[1] 486.5075

The criteria AIC and BIC will not always lead to the same model. Compare the results from these forward
selections.

Forward Selection using AIC

> step(lm(SAT ~ 1), SAT ~ ltakers + income + years + public + expend +

+ rank, direction = "forward")

Start: AIC= 419.42
SAT ~ 1

Df Sum of Sq RSS AIC
+ ltakers 1 199007 46369 340
+ rank 1 190297 55079 348
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+ income 1 102026 143350 395
+ years 1 26338 219038 416
<none> 245376 419
+ public 1 1232 244144 421
+ expend 1 386 244991 421

Step: AIC= 339.78
SAT ~ ltakers

Df Sum of Sq RSS AIC
+ expend 1 20523 25846 313
+ years 1 6364 40006 335
<none> 46369 340
+ rank 1 871 45498 341
+ income 1 785 45584 341
+ public 1 449 45920 341

Step: AIC= 313.14
SAT ~ ltakers + expend

Df Sum of Sq RSS AIC
+ years 1 1248.2 24597.6 312.7
+ rank 1 1053.6 24792.2 313.1
<none> 25845.8 313.1
+ income 1 53.3 25792.5 315.0
+ public 1 1.3 25844.5 315.1

Step: AIC= 312.71
SAT ~ ltakers + expend + years

Df Sum of Sq RSS AIC
+ rank 1 2675.5 21922.1 309.1
<none> 24597.6 312.7
+ public 1 287.8 24309.8 314.1
+ income 1 19.2 24578.4 314.7

Step: AIC= 309.07
SAT ~ ltakers + expend + years + rank

Df Sum of Sq RSS AIC
<none> 21922.1 309.1
+ income 1 505.4 21416.7 309.9
+ public 1 185.0 21737.1 310.7

Call:
lm(formula = SAT ~ ltakers + expend + years + rank)

Coefficients:
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(Intercept) ltakers expend years rank
399.115 -38.100 3.996 13.147 4.400

Forward Selection using BIC

> n <- nrow(x)

> step(lm(SAT ~ 1), SAT ~ ltakers + income + years + public + expend +

+ rank, direction = "forward", k = log(n))

Start: AIC= 421.31
SAT ~ 1

Df Sum of Sq RSS AIC
+ ltakers 1 199007 46369 344
+ rank 1 190297 55079 352
+ income 1 102026 143350 399
+ years 1 26338 219038 420
<none> 245376 421
+ public 1 1232 244144 425
+ expend 1 386 244991 425

Step: AIC= 343.56
SAT ~ ltakers

Df Sum of Sq RSS AIC
+ expend 1 20523 25846 319
+ years 1 6364 40006 340
<none> 46369 344
+ rank 1 871 45498 347
+ income 1 785 45584 347
+ public 1 449 45920 347

Step: AIC= 318.81
SAT ~ ltakers + expend

Df Sum of Sq RSS AIC
<none> 25845.8 318.8
+ years 1 1248.2 24597.6 320.3
+ rank 1 1053.6 24792.2 320.7
+ income 1 53.3 25792.5 322.6
+ public 1 1.3 25844.5 322.7

Call:
lm(formula = SAT ~ ltakers + expend)

Coefficients:
(Intercept) ltakers expend

1028.582 -66.170 4.605
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Comparison Notice that both approaches begin by first adding ltakers and then adding expend. But at this
point, the AIC and BIC criteria lead to different decisions. The best new variable to add by other criterion is
years. The change in log-likelihood is this.

> fit2 <- lm(SAT ~ ltakers + expend)

> rss2 <- sum(residuals(fit2)^2)

> fit3 <- lm(SAT ~ ltakers + expend + years)

> rss3 <- sum(residuals(fit3)^2)

> n * log(rss3/n) - n * log(rss2/n)

[1] -2.425431

This difference is larger than 2, but smaller than log(n) = 3.8918, so BIC is not willing to pay the penalty, but
AIC is.

Discussion Here is a summary of some key ideas.

1. The models selected by forward selection, backwards elimination, and stepwise regression might not be the
same, even using the same model selection criterion.

2. In a forward selection or a backwards elimination procedure, BIC may result in fewer parameters in the
model than AIC.

3. The forward selection, backward elimination, and stepwisse regression procedures are not guaranteed to find
the best model according to the AIC or BIC criterion.

4. P-values in resultant models should be treated with more than usual caution, because they do not reflect
the model selection process.

5. Generally, there may be several models that are highly similar in the quality of the fit.

A rich model with all of the variables can be made richer by considering interactions. You can try this
example yourself and learn that the backward elimination procedure beginning with all main effects and two-way
interactions produces a model with a very different set of variables than the analysis that assumes no interactions.

> step(lm(SAT ~ (ltakers + income + years + public + expend + rank)^2),

+ direction = "backward")
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