Clustering

Rob McCulloch

. Undirected Learning/Data Mining

The Cereal Data

. Distance
. Hierarchical Clustering
. K-means Clustering

1. Undirected Learning/Data Mining

Up until now we have emphasized directed data mining.

This is the x and y game.
Now we will look at tools in undirected data mining.

We will start with the most fundamental one, clustering.

What is undirected data mining ?

We still have observations on several variables,
and we are still looking for some kind of pattern.

But now, there is no “y".

We just have “x” and want to see if there is structure.

For example, suppose we have two numeric variables x; and x».

If | compute the correlation between x; and x» | could say | am
doing "undirected data mining/learning”.

If | regress, xo on x1, with the goal of predicting xo given future x;
values, | am doing directed data/learning mining.

The basic technique in undirected DM is clustering.

We take our observations and try to divide them into
groups of customers or brands or whatever.

It can be simpler to understand a large set
(eg of customers) by saying we have a group
like that, and a group like that, and so on.

Maybe our models will work better if you do one
group at a time.

“... most of the data mining projects going on
in the real world are directed”.
Berry and Linoff

Directed data mining is also called
supervised data mining or supervised learning.

And undirected data mining is also called,
unsupervised learing.

“With supervised learning there is a clear measure
of success.... This can be estimated in a variety of ways
including cross-validation. In the context of unsupervised
learning, there is no such direct measure of success.
It is difficult to ascertain the validity of inferences drawn
from the output of most unsupervised learning algorithms.
One must resort to heuristic arguments not only for
motivating the algorithms, as is often the case in
supervised learning as well, but also for judgments
as to the quality of the results. This uncomfortable
situation has led to heavy proliferation of proposed
methods, since effectiveness is a matter of opinion
and cannot be verified directly”.

Hastie, Tibshirani, and Friedman, page 439

2. The Cereal Data

We have data on different brands of cereal.

For each brand we have different measures of product
characteristics.

> dim(cereal)
[1] 43 8

We have 43 brands.
For each brand we have measurements
on 8 characteristics.

> row.names(cereal)

[11

[31

[51

[71

)
[11]
[13]
[15]
[171
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[371
[39]
[41]
[43]

-

""ACCheerios"
“'CocoaPuffs"
""GoldenGrahams™
Kix"
“MultiGrainCheerios"
“"RaisinNutBran™
“TotalRaisinBran™
"Trix"”
"WheatiesHoneyGold"
“AppleJacks"
“*CornPops™
“Crispix"
“FrostedFlakes"
“FruitfulBran”

“MueslixCrispyBlend"”

“NutriGrainAlmondRaisin®
“Product19™
“RiceKrispies"
"SpecialK"
""HoneyGrahamOhs™
""PuffedRice"”

""QuakerOatmeal™

"Cheerios"
“"CountChocula™
""HoneyNutCheerios"
"LuckyCharms"
"OatmealRaisinCrisp"
"TotalCornFlakes"
"TotalWholeGrain™
""Cheaties"

“AllBran"
"CornFlakes"

The Brands.

“CracklinOatBran™
"FrootLoops"
“FrostedMiniWheats"
“JustRightCrunchyNuggets"
“NutNHoneyCrunch*

“NutriGrainWheat”
“"RaisinBran”
“'Smacks™
"*CapNCrunch™
“Life"
""PuffedWheat"

The variables:

> names(cereal)

[1] "calories” "protein” "fat" "sodium" “fiber"
“carbo" "sugar"

[8] "potass"

Thus, each variable is a characteristic of the brand.
This is a common type of application.

Another common kind of data has consumer responses
to various questions about the brands as the variables.

10

Other than calories, everything is in grams or milligrams.

> summary(cereal)
calories
Min. : 50.0
1st Qu.:100.0
Median :110.0
Mean :107.9
3rd Qu.:110.0

Max . :160.0
fiber
Min. :0.000

1st Qu.:0.500
Median :1.000
Mean :1.714
3rd Qu.:2.850
Max . :9.000

protein
Min. :1.000
1st Qu.:2.000
Median :2.000
Mean :2.465
3rd Qu.:3.000
Max . :6.000

carbo
Min. : 0.00
1st Qu.:12.00
Median :14.00
Mean t14.01
3rd Qu.:17.00
Max . :22.00

fat
Min. :0.0000
1st Qu.:0.0000
Median :1.0000
Mean :0.9767
3rd Qu.:1.5000
Max . :3.0000
sugar
Min. : 0.000
1st Qu.: 3.000
Median : 8.000

Mean : 7.605
3rd Qu.:12.000
Max . :15.000

sodium

Min. H

0.0

1st Qu.:145.0
Median :190.0
Mean :180.5
3rd Qu.:220.0

Max . :320.0
potass
Min. : 15.00
1st Qu.: 37.50
Median : 60.00
Mean D 84.42

3rd Qu.:110.00
Max . :320.00

11

10

| want to see how the different brands are
“positioned” with regard to these characteristics.

If I just
think about o P —
two of the
characteristics L
at a time this
is easy.

o i
Alran

How do | see o] e, o
how they W

are positioned B SR e S
using all 8 ?

esoneyoeld o oo o
NuiNHoneycAg@hesrios LuckChammaiLoops Smacks

Fvﬂs‘edf\ﬂﬂwicmlu\a
R P ————
fureanee e o
: i : ‘
° & 10 e

cereal$sugar
12

11

123458 0 100 250 051 2 50 150 a0

calories | [£ §« . 1 &
Maybe | S protein | ¢ l
could e -
o o ° E B
drop
RS N 1 a
pOtaSS . 1 HE E H sodium ’
or -1 : : = -
fiber. i :
Jeei-"qb it
ﬁ; Egh: Ted E i E i b
et ‘N ’
gg" ik , x H J sugar o
I R I % -

60 100 140 08 10 20 30

180

60 100

02458

05 10

3. Distance

We think of each brand of cereal as an object.

We wish to group together objects which are similar, or
equivalently, place objects which are different in different groups.

To do this, we have to have a measure of how different objects are.

In R the difference between two objects is called the distance.

13

Suppose x denotes the set of measurements
for one object and y those of another,

(just to make a point, y does not mean what it
has in directed mining!!!!).

For example, with the cereal data and the first
two brands:

>x =cereal[1]
>y = cereal[2,] (ACCheerios is Apple-Cinnamon Cheerios)
> X
calories protein fat sodium fiber carbo sugar potass

ACCheerios 110 2 2 180 1.5 105 10 70
>y

calories protein fat sodium fiber carbo sugar potass
Cheerios 110 6 2 290 2 17 1 105

15

14

So, object x is ACCheerios and object y is Cheerios.

How different are objects x and y ?

The first thing you might think of to use is
Euclidean distance:

dx) = [0 -0)

> sqrt(sum((x-y)"2))
[1] 116.0366

16

15

R has a function to compute distances, since
it plays a basic role in clustering (and mds).

> library(mva)
> 2dist

Usage:
dist(x, method = "euclidean", diag = FALSE, upper = FALSE)

print.dist(x, diag = NULL, upper = NULL, ...)
as.matrix.dist(x)

Here, x would be a data frame, and the function
will compute the distances for all pairs of objects,

for all rows of the frame.
17

16

If we try dist on the first two brands we see that it
returns the Euclidean distance:

>cer2 = cereal[1:2]]
>cer2

calories protein fat sodium fiber carbo sugar potass
ACCheerios 110 2 2 180 1.5 10.5 10 70
Cheerios 110 6 2 290 2.0 17.0 1 105
> dist(cer2)
[1] 116.0366

18

17

The first four objects (brands):

> dist(cereal[1:4,])

ACCheerios Cheerios
Cheerios 116.036632
CocoaPuffs 15.508062 121.6511
CountChocula 6.363961 117.8940

CocoaPuffs

10

So, between each pair of objects we

have a distance.

19

18

With all 43 brands we have a distance matrix.

>temp = as.matrix(dist(cereal))
> dim(temp)
[1] 43 43
>temp[1,1]
[0
>temp[1,2]
[1] 116.0366
>temp[1,3]
[1] 15.50806
>temp[3,1]
[1] 15.50806

To access specific distances | turn it into
a matrix.

The matrix is 43 by 43 each row and column
corresponds to an object (brand).

The distance between object i and object j
is templi,j].

Object 1 is not far from itself.
Dist between 1 and 2 is as before.
Dist between 1 and 3 is as before.

Dist between 1 and 3 is same as 3 and 1.

20

19

Is Euclidean distance a sensible thing to use
for our cereal example ?

Some quantities are measured in grams and others
in milligrams.

21

20

The dist function in R has 5 options for the form of the distance:

euclidean:

Usual square distance between the two vectors (2 norm).

Maximum distance between two components of x and y (supremum
norm)

manhattan:

Absolute distance between the two vectors (1 norm).

sum(|x_i - y_i| / |x_i +y_i|). Terms with zero numerator and
denominator are omitted from the sum and treated as if the values
were missing.

binary:

(aka asymmetric binary): The vectors are regarded as binary bits, so
non-zero elements are “on' and zero elements are “off'. The distance
is the proportion of bits in which only one is on amongst those in
which at least one is on.

22

21

> tempdf = data.frame(x=c(1,4),y=c(2,6))
>row.names(tempdf) = c("01","02")
> tempdf

Xy A simple example
o112 with 4 different
0246 distances applied.

> dist(tempdf,method="euclidean")

[1]5
> dist(tempdf,method="maximum®") NOIe that Canberra

[1] 4 does not depend on

> dist(tempdf,method="manhattan") the units of the variable.
(17

> dist(tempdf,method="canberra")

[1]1.1

> (3/5) + (4/8)

[11.1

23

22

How about the binary distance?

This is appropriate when each of the variables in
binary (factor with two levels).

For example, we might ask consumers a series
of yes/no questions about the brands.

Of course, you can always take any variable
and “bin” it to make it binary.

24

23

The distance is:

times only one var =1 / times at least one is 1

>01=¢(0,000,1,11,1,1) At least one of the variables is 1
>02=¢(0,0,1,1,0,1,1,1,1) 7 times.
>temp =rbind(01,02)

> dist(temp,method="binary")

3 of those times only 1 of the
[1] 0.4285714 A
37 two is 1.

[1] 0.4285714

distis 3/7.

For example, if they matched perfectly, the
distance would be 0.

25

24

There are only three possibilities:

both 0, both 1, mismatch.

dist = # mismatch / (# both 1 + # mismatch)

26

25

It is not clear
that this is
the best
thing to do !!

Why should
these two
simple examples
give different
distances ?

>01=c¢(0,0,0,0,0,1)
>02=¢(0,0,0,0,0,0)

>temp =rbind(01,02)

> dist(temp,method="binary")
1

>

>01=c(1,1,1,1,1,0)
>02=c¢(1,1,1,1,1,1)

>temp =rbind(01,02)

> dist(temp,method="binary")
[1] 0.1666667

>1/6

[1] 0.1666667

People have looked at just about every possible way
you can combine # both 0, # both 1, # mismatch
to get a distance measure.

27

26

In general you should define your own distance measure.
This will give a p by p matrix of distances for any pair.

R has functions for turning matrices into distance
data structures and vice versa:

as.matrix.dist(x)
as.dist(m, diag = FALSE, upper = FALSE)

You can also just use as.matrix (as | did, seems to
give the same thing).

28

27

> temp = dist(cereal[1:4,])

> temp

ACCheerios Cheerios CocoaPuffs

Cheerios 116.036632
CocoaPuffs 15.508062
CountChocula 6.363961

121.6511
117.8940

> junk = as.matrix.dist(temp)

> junk

ACCheerios
ACCheerios 0.000000
Cheerios 116.036632

CocoaPuffs 15.508062
CountChocula 6.363961
> stuff = as.distunk)
> stuff

ACCheerios
Cheerios 116.036632
CocoaPuffs 15.508062
CountChocula 6.363961

Cheerios
116.0366

0.0000
121.6511
117.8940

Cheerios

121.6511
117.8940

10

CocoaPuffs
15.50806
121.65114
0.00000
10.00000

CocoaPuffs

10

CountChocula
6.363961
117.894020
10.000000
0.000000

29

28

Choosing a good distance could be quite difficult
to do sensibly in practice.

You could have several different numeric variables
with completely different units.

What is the relative size of the distances?

dxy) = S w(x -y

Choosing the weight is equivalent to choosing
a scaling for the variable.

30

29

How about different factor variables with different
numbers of levels combined with numerics

having different units ?

31

30

How about our cereal example ?

Hey this should be easy, we just have grams
and milligrams.

Should we convert the grams into milligrams ?

32

31

Note:

The R documentation calls the distances
“dissimilarities”.

33

32

Hierarchical Clustering

Lets look at a simple example.

00 is a data frame holding 8 objects.
Each object is represented by two numeric measurements called x
and y.

> oo

»
<

ol
02
03
o4
o5
06
o7
o8

o

N2 OOON O
o

[ure
O W ~NWOWOOoOOoOOo

e

33

There
are two
obvious groups.

02

35

34

The function in

R for hierchical > temp = hclust(dist(00))
clustering is > names(temp)
“hC|USt" [1] "merge" "height" "order"
' [4] "labels" "method" "call"
[7] "dist.method"
You have to o
. .) emp$merge
give it a distance (112
structure.] 4 -2
[2] 4 5
Here the results [B] 8 2
are in temp.] s 1
The merge i} j j
component . 71 s 6
tells how the clustering
is done.

Each row refers to a step in the clustering procedure.
We will go through it line by line, step by step.

36

35

Hierarchical clustering starts by thinking
of each object as a cluster all by itself.

Then it picks two “clusters” to merge together.

The first row of the temp$merge says the first
two objects joined together are 0l and 02.

The numbers with a minus sign refers to the
actual objects. So -1 refers to the first object.

>temp$merge

[11[.2] Take objects 1 and 2 and merge
] -1 -2 them together.

37

36

So this is step 1:

>temp$merge

‘©oq

[11[.2]
[-1 -2
@)

2
O
©
@
38

37

The next

. >temp$merge
step IS to L2
put objects] 1 -2
4 and 5 together. 2] 4 s

O

EORel

The next

step is to

put object

8 and the cluster
formed at step 2
together.

:u@ @
®

>temp$merge
So, this two refers to the

[111.2]
cluster formed at step 2
-1 -2 which was objects 4 and 5
[2] -4 -5 combined.
[3] 8 2
©
@
. Q G
40

39

[1]
[2]
[3]
[4]

kN oa R

41

40

[-
[2] -
B8] -
[4] -
[5] -

S b o b B
w kNG

42

41

1] 1 -2
2] -4 -5
8] 8 2
4] 3 1
[5] -6 3
6] -7 4

43

[1]
[2]
[3]
[4]
[5]
[6.]
[71

(S IRV SO S NN

o r w Rk N &N

Finally, we are all one big happy family.

43

How does
R plot the
clustering ?

> plot(temp)

[-
[2] -
B8] -
[4] -
[5] -
[6] -
[71

Height

[INECI- NN QRN
o h Wk NG

The “height” represents
the “closeness” of the
joined clusters.

Cluster Dendrogram

06

o8

o4

dist(o0)
helust (7, “complete”)

03

45

44

Hierarchical Clustering

1.
Start with each object as a cluster by itself.

2.

At each step, combine the two clusters which
are closest.

3.

Stop when all objects are combined together.

How do you define how close two clusters are ?

46

45

“complete”

uses the
maximum of

all distances
between pairs

of objects formed
by selecting one
object from each

of the two clusters.

“single” uses the
minimum.

> hclust(dist(oo),method="complete")$merge

[1112]

[L1]
[2]
[3]
[4]
[5]
[6.]
7]

> hclust(dist(oo),method="single")$merge

[BRI SO S NN

A w ok NG R

6

[1112]

[1]
[2]
[3]
[4]
[5]
[6.]
[7]

[NI RNC SR NN

o w s N R &R

47

46

“complete” will give you “tight” clusters.

“single” will give you snaky ones.
(any friend of yours is a friend of mine).

There are several choices.
First you have to choose the distance between
pairs of objects, then you have to choose how to

combine such distances to give the distance between
two clusters of objects.

48

a7

Let’s try the cereal data

> cerhc = hclust(dist(cereal,method="canberra"),method="complete")
> names(cerhc)

[1] "merge” "height* "order" "labels"

[5] "method" “call" "dist.method"

> plot(cerhc,cex=.75)

49

48

Cluster Dendrogram

SHIBUIS
sd0oT00Ly
SUOWELRIDABLOH
SEiEIE5013
stodiiog
syoerajddy
BAUNIABUOHNINN
SWRIEIUARIDY
EINI0UJUNOS
SN e300
suuEyS P
younionded

SaE| W6
6 Lanpald

I
SRl UI00IBI0L
X0t
saltsUbaIy

1EaupaUNg

adldpayng
G5LOUsIEY[RALIED
s0188UDIY
50188U DINN ABUOH
E

=jaBENNALIUNIONELEN,
pIDg#BUOHSENEBN,
SOUBIUQUIBISIHN
ueIgUBIEY
uEIgUSIEN Bl L

safealD
WIEIQE DA EID L
UISIEHPUOLIIUIIO LN
pualgAdsLDsan
UEIGIEOUIIEID
uEIgINN LIS By

ueigiy

ueIg Iy
SIEAUMILI PS04
IEBLIIEO.HEND
s0u8aUD

WoieH

50

= "canberra")

helust (*, "complete”)

dist{cereal, method

49

Cluster Dendrogram

teaypaund

2ypaynd

[E8LIEQUIBHEN D

SjeapUIAPaS0lS

ueIgUISIEY
_’|_H uEIGUIIER Ej0L

UeJBINAINI4

an

1eBUAUIBISUINK

SUGLIBUEID A3 UOH

yauniondeo

saqe|dnalsoly
SBfE[JLODIEL
U1 AAUBHNIRR

SpRABNN AL UBIIST
plog ABuDHSaEaUN
saitsipeay

ueiglly

S3{e|Ju09
SIMELBIDUAR| 0D
A
HanpoLd

sapeayo
UlEIOBIUMEIL
S0UAYIUIBIOMN K
S0LBaYJINNASLOH
HBUUISIEY EBLIED
s0(13a113

Speug

sdoduiod

sdooTooly
syoera|ddy

WL
UEIGIEQUIPIEID)
UEIGINNUISIEY
UISIEHRUOL YUIRIOANK
PUBIBATSLONISEN

00l

T
08

T
09 oF 0z 0

WoieH

51

"euclidean")

dist{cereal, method

helust (*, "single")

50

Cluster Dendrogram

52

uE|ey|eaulen
SOUIMODY

S0UBAUGINNABUOH

S| BBARALUNIDIELISA
PIDOABUOHSANEBUAL
sousaOUIEIGNIN

UISIE P U O Ul
pusIBAUSIDISEN

arn

SalEalD
IO BIBLAMIEIOL
uesguIsIEY]
ueiguisieieln L
SHIBS
stoo7o0l4
SUQUIELEIO ABUDH
SBAEES0LY
sdoduiog
syoerajddy
UBIEIEOUIMIEID

“canberra")

helust (%, "single")

B[N0 JWUNGS
SYne0I0g
ULy
HAUNIABUBHNINN
L
SLIELEISUED|0D
YIURISNHED
Safe|WOOIEeL
01

disticersal, method

uelginginiy
SaIdsUa01Y

w5119
SEHEIILI0D
6 11anpoig
Hiepads
VERURAUIBIOUINK

S0UBBLY

EIGINNUE [y

eIy

L eaueoimeno
1eaUMpaNNG
aa14paung

T T T T T T 1
oe gz o0z &L 0L S0 00

WoleH

51

cutree

There are several functions in R for “doing”
hierarchical clustering.

At a minimum we need to:
(i) cut the tree at some level to define a set of clusters

(ii) get the cluster id’s of the objects

(i) and (ii) are achieved by cutree.

53

52

> oohc = hclust(dist(oo))

> plot(oohc)

>ooc3 =cutree(oohc,3)—_
>o00c3

01 020304050607 08
11122232

> cutree(oohc,h=4)
010203 0405060708
11122232

You can ask for
anumber of
groups

or cut the
“dendogram”
at a certain
height.

Height

Cluster Dendrogram

o7

03

dist{oo)
helust (. “complete")

54

53

Let’s do cereal with only two variables and

then the whole thing.

> cer2 = cereal[,c("sugar","protein")]

> dcer2 = dist(cer2,method="euclidean")
> cer2hc = hclust(dcer2)

> plot(cer2hc,cex=.75)

> abline(h=3)

Height

Cluster Dendrogram

]

deer2
helust (*, "complete")

55

54

> cer2Ind = cutree(cer2hc,h=3)
> table(as.factor(cer2ind)) Plot of the two variables with
the group labels.

1234567
73129732
> © o 92 g2
> plot(cer2,type="n",
xlab="sugar",ylab="protein") w | a2
>for(i in 1:length(cer2ind)){
+ text(cer2$sugar[cer2ind==i], < & o
cer2$protein[cer2ind==i], g
paste("g",i,sep="")) e o o o al at g3 g3 gb
+}
a7 ¢ ¢ 95 gl gl gl @3 3 o
=97 g1 93 g3 g3
0 5 10 15

sugar

56

55

Let's change it
to “canberra”.

Cluster Dendrogram

YaumQABUOHNINN

stooTj00i4
suseyokpN
SEuE
Sioeraiddy
p

Sungeoay

=

sue
Jesumpaung
aanpayng

dist(cer2,method="canberra")

hclust(dcer2)

>dcer2

> cer2hc

=.75)

> plot(cer2hc,cex:

WoleH

=.55)

> abline(h

Safelipalsol]
eiouspion

an

u
(E—

el

sapeauy

dcer2

helust (7,

“complete")

57

56

© - g2 gb
Different.

0 o a2
- o a6 gb

=

z

g

a
® o g5 o5 g4 ol o4 g4 g4 o4
o~ = g8 g5 o5 gl gl g1 ol al gl gl gl
- g7 g3 g3 g3 g3

0 5 10 15

sugar

58

57

Cereal, the real thing:

Cluster Dendrogram

cerhc = ©
hclust(dist(cereal,method="canberra")

,method="complete") e

> plot(cerhc,cex=.75) -

> abline(h=3.5) © 1
> cerind = cutree(cerhc,h=3.5) T - €

> table(as.factor(cerind)) °

ACCheerios

HaneyNutCheerios
OatmealRaisnCrisn

123456
16 21382 2

dist{cereal, method = “canberra’)
helust (*,"complete”)

59

58

> row.names(cereal)[cerind==1]

[1] "ACCheerios" "HoneyNutCheerios"

[3] "MultiGrainCheerios" "OatmealRaisinCrisp"
[5] "RaisinNutBran" "TotalRaisinBran"

[7] "TotalWholeGrain" "Cheaties"

[9] "WheatiesHoneyGold" "AllBran"

[11] "CracklinOatBran"
[13] "MueslixCrispyBlend"
[15] "RaisinBran" "Life"

"JustRightCrunchyNuggets"
"NutriGrainAlmondRaisin"

> row.names(cereal)[cerind==3]

[1] "CocoaPuffs"

[5] “Trix" "AppleJacks" "CornPops" "FrootLoops”

[9] "FrostedFlakes" "NutNHoneyCrunch" "Smacks" “CapNCrunch”
[13] "HoneyGrahamOhs"

> row.names(cereal)[cerind==4]

[1] "Kix" "TotalCornFlakes" "CornFlakes" "Crispix"

[5] "NutriGrainWheat" "Product19" "RiceKrispies" "SpecialK"
> row.names(cereal)[cerind==2]

[1] "Cheerios" "QuakerOatmeal"

> row.names(cereal)[cerind==5]

[1] "FrostedMiniWheats" "FruitfulBran"
> row.names(cereal)[cerind==6]

[1] "PuffedRice" "PuffedWheat"

“CountChocula” "GoldenGrahams" "LuckyCharms"

How many groups?

Few enough that you

can think about them.

But you don’t want to
combine together
things that are really
different.

I've probably chosen
too few here.

Usually people make
up names for
the groups.

60

59

We can
easily
obtain

the variable
summaries
for a cluster.

> summary(cereal[cerind==1,])

calories

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max .

: 70.

1110
1113

1160

100

122

ok ooo

FTiber

Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max .

1

1

2
12.938

3

9

-000
-500
.750

-250
-000

protein

Min. 12.000
1st Qu.:2.750
Median :3.000
Mean :2.875
3rd Qu.:3.000
Max . :4.000

carbo

Min. : 0.00
1st Qu.:11.25
Median :14.50
Mean :13.28
3rd Qu.:16.25
Max . :21.00

fat
Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max .

W N R R R R
©o o w o o o

sugar
Min.
1st Qu.:
Median :

Mean

3rd Qu.:10.
Max. t14.

© N O w

o o o u o o

sodium
Min.
1st Qu.
Median
Mean
3rd Qu.
Max .

1140
1165.
1195.
1190.
1212.
1260

o 0 » o o o

potass

Min.

1st Qu.:

Median

Mean

3rd Qu.:

Max -

: 60.0
90.0
:115.0
:136.6
160.0
:320.0

61

60

I'd like to see how the cluster differ.
| could print summaries for each cluster but
it might not be easy to compare.

I'll plot the cluster means for the different groups.

m1 = mean(cereal[cerind==1,])

m3 = mean(cereal[cerind==3,])

m4 = mean(cereal[cerind==4,])
plot(c(1,8),range(c(m1,m3,m4)) xlab="var" ,ylab="mean" type="n")
text(1:8,m1,"gp1",col=2)

text(1:8,m3,"gp3",col=3)

text(1:8,m5,"gp4",col=4)

62

61

No use
because of
the different
scales.

mean

250
I

h apl
o3
B ap4
a1
gp4
_ |ged
g |
9p3
gpd 4
o4 w g EE L
. T
1 2 3 4 5 6 7 8
var
63

62

I'll scale
all the vars
to be
between
Oand 1,
and then
plot the
means.

cerealsc = cereal

for(iin 1:8){

temp = range(cerealsc([i]])

cerealsc([i]] = (cerealsc([i]]-temp[1])/(temp[2]-temp[1])
}

m1 = mean(cerealsc[cerind==1,])

m3 = mean(cerealsc[cerind==3,])

m4 = mean(cerealsc[cerind==4,])
plot(c(1,8),range(c(m1,m3,m4)) xlab="var" ylab="mean" type="n")
text(1:8,m1,"gp1",col=2)

text(1:8,m3,"gp3",col=3)

text(1:8,m4,"gp4" col=4)

64

63

> names(cerealsc)

[1] "calories" "protein" "fat"

“carbo"

[7] "sugar" "potass"

Group 3 is high
on sugar

and low on
protein,

fiber,

and potassium.

"sodium" “fiber"
g4
w
q 3
S - gp
©
S gpt gp1
93 9p3
gp3 g1
s g4 o
3
£
3 gpt
a1
a4 ;
3 @
o~
= g4
g2 o4 o4 i
93
T T T T T T T T
1 2 3 4 5 6 7 8

64

5. K-means Clustering

k-means is another popular clustering method.

For example, it is in h2o.

65

The Algorithm:

[N

. Choose the number of clusters.

2. Choose starting values for the mean vector of each
cluster.

. Assign each object to the cluster having the closest mean

. Replace the old cluster means with the mean of the cluster

. Repeat 3 and 4 until “done”

O b w

Note: by mean vector, | mean a vector of means
for each of the variables.

67

66

The help.

Description

Perform k-means clustering on a data matrix

Usage
kmeans(x, centers, iter.max =
Arguments

x
centers Either the number of clusters or a set of intial cluster centers. If the first, a random set of rows in X are chosen as the initial centers.

iter.ma The maximum number of iterations allowed.
x

A numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).

68

67

Let's try it.

I'm using the scaled cereal data.

69

68

> cerkm = kmeans(cerealsc,5)
> names(cerkm)
[1] "cluster" "centers" "withinss" "size"
> cerkm$cluster
[115155552524324252535253255242454224251553223
> cerkm$centers

calories protein fat sodium fiber carbo sugar potass
1 0.5454545 1.0000000 0.3333333 0.8125000 0.16666667 0.7500000 0.1333333 0.2131148
2 0.4155844 0.2571429 0.1428571 0.5669643 0.15079365 0.7987013 0.2095238 0.1487119
3 0.4181818 0.5600000 0.6666667 0.4312500 0.44888889 0.2727273 0.3600000 0.4918033
4 0.7727273 0.4000000 0.4444444 0.6145833 0.39814815 0.7159091 0.7555556 0.5355191
5 0.5625000 0.1125000 0.3333333 0.5527344 0.06944444 0.5653409 0.7666667 0.1004098

So, $cluster give us the cluster id for each object.
$centers gives us the variable means for each cluster.

70

69

> cerkm$withinss

[1] 0.2693324 3.4848313 1.8653941 0.9931863 1.8572751
> cerkm$size

[1] 214 5 616

$withinss gives us

Ne

P
=% n, = # objects in the cluster
=1

N

for each cluster.

$size gives us the number of objects in each cluster (n,).

And that's it !!

71

70

How many clusters?

I'll try various cluster sizes and for each size sum
the $withinss.

A “good fit” means this is small.

ncl =40

ssv =rep(0,ncl-1)

for(i in 2:ncl)

{

temp = kmeans(cerealsc,i)
print(i)

print(temp$size)

ssv[i-1] = sum(temp$withinss)
}

plot(2:ncl,ssv)

72

71

Suggests no
more than

13 clusters,
but lot's

of possibilities.

sav

15

73

72

For k-means it seems like we had to make fewer
choices than with the hierarchical method.

But don't be fooled.

Choosing the scale of the data affects the clustering.

74

73

