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1. Introduction to Predictive Models

Simply put, the goal is to predict a
target variable Y with input variables X!

In Machine Learning terminology this is know as supervised
learning (also called Predictive Analytics).

In general, a useful way to think about it is that Y and X are
related in the following way:

Yi=f(Xi) + e

The main purpose of this part of the course is to learn or estimate
f(-) from data



Examples:
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: survival outcome for a patient

: will a customer respond to a promotion (target marketing)

which team will get the next penalty in a hockey game
which customer is likely to cancel

how much a used car will sell for

: how much a house will sell for



Y =1f(X)+e

» f(x): the part of Y you learn from X, the signal.

» ¢: the part of Y you don't learn from X, the noise.

More generally,
we want the conditional distribution of Y given X = x.



Note:

Y| X=x

» If Y is categorical we are doing classification

» If Y is numeric we are doing regression



Example: Boston Housing

We might be interested in predicting the median house value as a
function of some measure of social economic level... here's some
data:

Each observation corre-
sponds to a town in the
Boston area. o

meav

medv: median house value
(data is old).

Istat: % lower status.

What should 7(-) be?

Istat



How about this...

medv

If Istat = 30 what is the prediction for medv?



or this?

medv

If Istat = 30 what is the prediction for medv?



How do we estimate f(-)7

» Using training data:

{(X1, Y1), (X2, Y2), ..., (Xn, Ya)}

» \We use a statistical method to estimate the function f(-)
» Two general methodological strategies:

1. simple parametric models (restricted assumptions about f(-))
2. non-parametric models (flexibility in defining f(-))
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Back to Boston Housing

Parametric Model Non-Parametric Model
(Y=a+px+e) (k-nearest neighbors)

m
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Simple parametric model:

Yi=a+fxi+e€

Using the training data,
we estimate f(x) as

f(x)=a+fx

where & and 3
are the linear
regression estimates.

m
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To get this estimate we used
kNN
- k-nearest neighbors. &1

medv

To estimate f(x¢), average the
y values for the k training ob- &9
servations with x closest to xr.

Istat

What do | mean by closest?
We will choose the k=50 points that are closest to the X value at
which we are trying to predict.

11



k=50

Istat
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meav

k=50
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meav

k=50
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k=50

Istat
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k=50

Istat
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k=50

Istat
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Okay, that seems sensible, but, 2 neighbors or 200 neighbors?
k=2

meav

w0
Istat
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=10

Istat
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=50

Istat
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meav

k=100

Istat
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meav

k=150

Istat
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meav

k= 200

Istat
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meav

k= 400

Istat
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meav

k=505

Istat
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for k-NN:
A big k gives us a simple looking function.

A small k can give us a more complex, flexible looking function.
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Complexity, Generalization and Interpretation

> As we have seen in the examples above, there are lots of
options in estimating f(X).

» Some methods are very flexible some are not... why would we
ever choose a less flexible model?

1. Simple, more restrictive methods are usually easier to interpret
2. More importantly, it is often the case that simpler models are
more accurate in making future predictions.

Not too simple, but not too complex!
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In R:

#load knn library (need to have installed this with install.packages("kknn"))
library(kknn)

#get Boston data

library(MASS) ## a library of example datasets
#try:

names (Boston)

dim(Boston)

Boston[1:5,]

summary (Boston)

1sO

mean (Boston$lstat)

mean (Boston[,13])

#make the variables in Boston directly accessible
attach(Boston)

1s(pos=1)

1s(pos=2)

#plot the data
plot(lstat,medv,xlab="% lower status",ylab="median value")
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#run regression, print summary, add line to plot
1mB = 1lm(medv~lstat,Boston)

print (summary (1mB))

abline (1mB$coef,col="red",lwd=4) #lwd: line width=4
#try:

names (1mB)

cor (lmB$fitted.values,lmB$residuals) #cor is O!

#fit knn with k=50

train = data.frame(lstat,medv) #data frame with variables of interest
#test is data frame with x you want f(x) at, sort lstat to make plots nice.
test = data.frame(lstat = sort(lstat))

kf50 = kknn(medv~lstat,train,test,k=50,kernel = "rectangular")

#add knnb50 fit to plot
lines(test$lstat,kf50$fitted.values,col="blue",1lwd=2)

#add k=200
kf200 = kknn(medv~lstat,train,test,k=200,kernel = "rectangular")
lines(test$lstat,kf200$fitted.values,col="magenta",lwd=2,1ty=2) #line type 2

#add legend to plot
legend("topright",legend=c("lin","knn50","knn200"),
col=c("red","blue", "magenta") ,lty=c(1,1,2))
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#get price prediction at lstat = 30 using k=50

dfp = data.frame(lstat=30)

k50 = kknn(medv~lstat,train,dfp,k=50,kernel = "rectangular")

cat ("kNN50: predicted house price at lstat=30 is ",k50$fitted,"\n")
points(30,k50$fitted,pch=4,cex=2,col="black")

#get prediction from linear fit

p30L = predict(1lmB,dfp)

cat("Linear: predicted house price at lstat=30 is ",p30L,"\n")
text (30,p30L,"L",cex=2,col="black")
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1.1. Problem: Fitting kNN to the Cars Data

Get the susedcars.csv data set from the webpage.
Plot x=mileage versus y=price. (price is the price of a used car.)

Does the relationship between mileage and price make sense?
Add the fit from a linear regression to the plot.

Add the fit from kNN for various values of k to the plot.
For what value of k does the plot look nice?

Using your “nice” value of k, what is the predicted price of a car
with 100,000 miles on it?

What is the prediction from a linear fit?
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2. Measuring Accuracy

How accurate are each of these models?

We can measure the fit of our model (our function estimate) using
the root mean squared error (RMSE):

This measures, on average, how large the “mistakes” (errors) made
by the model are...
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Measuring Accuracy (Boston housing, again)
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Complexity (og(1/k)
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3. Out-of-Sample Predictions

But, do we really care about explaining what we have already seen?

Key ldea: what really matters is our prediction accuracy
out-of-sample!!!

Suppose we have m additional observations (X?, Y?°), for
i=1,...,m, that we did not use to fit the model.

Let's call this dataset the test set (also known as hold-out set).

Let's look at the out-of-sample RMSE:

A 2
RMSE® = | Yo —F(xo)]
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NB:
(1)

Use the in-sample (training data) (X;, Yi),i =1,2,...,n
to estimate f.

Now we have f.

(2)
Evaluate predictive performance on the test data (X?, Y?°), for
i=1,...,m,

RMSE®° = lm Yo _ f(Xe ?
m 2 Y0 = F06)
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Out-of-Sample Predictions

In our Boston housing example, | randomly chose a training set of
size 400. | re-estimate the models using only this set and use the
models to predict the remaining 106 observations (test set)...

out-of-sample RMSE
s o0 o5 10

Complexity (Iog(1/k))

Now, the model where
k = 35 looks like the
most accurate choice!!

log(1/35) = -3.56

Not too simple but not
too complex!!!
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The Key ldea of the Course!!

—
o High Bias Low Bias

mﬁ-' Low Variance High Variance
=}

]

=

2

g Test Sam

o

A

Training Sample

Low High
Model Complexity

Complex enough to find the signal, but not so complex that you
chase the noise in the training data, only the signal will help you
predict new Y given new X.
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In R:

#load libraries and get Boston data
library(kknn) ## knn library

library(MASS) ## a library of example datasets
attach(Boston)

n = nrow(Boston)

# get in-sample and out-of-sample data frames

df = data.frame(lstat,medv) #simple data frame for conveniance
ntrain=400 #number of observations for training data
set.seed(99) #set seed for random sampling of training data
tr = sample(l:nrow(df),ntrain)

train = df[tr,] #training data

test = df [-tr,] #test data

#loop over values of k, fit on train, predict on test

kvec=2:350; nk=length(kvec)

outMSE = rep(0O,nk) #will will put the out-of-sample MSE here

for(i in 1:nk) {
near = kknn(medv~lstat,train,test,k=kvec[i],kernel = "rectangular")
MSE = mean((test[,2]-near$fitted)"2)
outMSE[i] = MSE
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#plot

par (mfrow=c(1,2))

plot (kvec,sqrt (outMSE))
plot(log(1/kvec),sqrt (outMSE))
imin = which.min(outMSE)
cat("best k is ",kvec[imin],"\n")

#fit with all data and best k and plot

test = data.frame(lstat=sort(df$lstat))

near = kknn(medv~lstat,df,test,k=kvec[imin],kernel = "rectangular")
par (mfrow=c(1,1))

plot(df)

lines(test$lstat,near$fitted,col="red",type="b")



4. Bias-Variance Trade-Off

Why do complex models behave poorly in making predictions?

Let's start with an example...

» In the Boston housing example, | will randomly choose 30
observations to be in the training set 3 different times...

» for each training set | will estimate f(-) using the k-nearest
neighbors idea... first with kK = 2 and them with kK = 20
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k=2

High variability...

(blue points are the training data used)
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k=20

Low variability

... but BIAS!!
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What did we see here?

» When k = 2, it seems that the estimate of f(+) varies a lot
between training sets...
> When k = 20 the estimates look a lot more stable...

Now, imagine that you are trying to predict medv when
Istat = 20...

compare the changes in the predictions made by the different
training sets under k = 2 and k = 20...

what do you see?
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Bias-Variance Trade-Off

» This is an illustration of what is called the bias-variance
trade-off.

» In general, simple models are trying to explain a complex, real
problem with not a lot of flexibility so it introduces bias... on
the other hand, by being simple the estimates tend to have
low variance

» On the other hand, complex models are able to quickly adapt
to the real situation and hence lead to small bias... however, if
too adaptable, it tends to vary a lot, i.e., high variance.
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Bias-Variance Trade-Off

Once again, this is the key idea of the course!!

Prediction Error

High Bias
Low Variance

Low Bias

High Variance

Test Sam

Training Sample

Low

Model Complexity

High
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Bias-Variance Trade-Off

Let's get back to our original representation of the problem... it
helps us understand what is going on...

Yr = f(Xf)+€

» We need flexible enough models to find f(-) without imposing
bias...

P> ... but, too flexible models will “chase” non-existing patterns
in € leading to unwanted variability
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5. Cross-Validation

So, a key idea is to evaluate our predictive performance and a test
or validation data set.

» Using a validation-set to evaluate the performance of
competing models has two potential drawbacks:

1. the results can be highly dependent on the choice of the
validation set... what samples? how many?

2. by leaving aside a subset of data for validation we end up
estimating the models with less information. It is harder to
learn with fewer samples and this might lead to an
overestimation of errors.

» Cross-Validation is a refinement of the validation strategy that
helps address both of these issues.
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Leave-One-Out Cross-Validation (loocv)
The name says it alll

» Assume we have n observations in our dataset. Define the
validation set by choosing only one observation. Call it the it
observation...

» The model is then trained on the remaining n — 1
observations and the results are used to predict the left-out
observation. Compute the squared-error MSE; = (Y; — Y;)?

» Repeat the procedure for every observation in the dataset (n
times) and compute the average cross-validation MSE:

1 n
MSEeocv — = § MSE;
n
i=1
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loocv: Boston Data: x=lstat, y=medv

w 7 w 7
0 0
s o | s o |
x x
:‘: h T T T T :: 7\ T T
4 -3 -2 -1 0 20 40
complexity (log(1/k)
Min is at about
k = 40.

Istat

80

100
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k-fold Cross Validation

LOOCV can be computationally expensive as each model being
considered has to be estimated n times! A popular alternative is
what is called k-fold Cross Validation.

» This approach randomly divides the original dataset into k
groups of approximately the same size

» Choose one of the groups as a validation set. Estimate the
models with the remaining kK — 1 groups and predict the
samples in the validation set. This will give us Y; for each i in
the validation set (fold you are predicting).

» Repeat the procedure for every fold in the dataset (k times).
This will give us a (out-of-sample) Y; for every observation in
the data set.

> MSEkcv — %Z” 1(Yl _ Y/)2

1=
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forj=1tok:
predict data in fold = j using data in fold # j

This will give you a Y; for every observation.
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k-fold Cross Validation

The usual choices are k =5 and kK = 10...

&9 — 5-fold1
— 5-fold2
~—— 10fold

We ran 5-fold twice.

Sometimes the results

can be sensitive to w e
the random choice of Z

folds. e
We ran 10-fold once. 24
We don't always get <

this much agreement!

~ log(1/k)

Boston_cv.pdf
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LOOCV vs k-fold:

You might think that LOOCV is best if you have the time to run it.

However, with LOOCV the training data is almost the same
everytime so that there is not as much variation on the fitted
model as you would get if you really drew another sample. Hence
the risk in prediction is underestimated.

5 or 10-fold CV is the industry standard !!!
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In R:

#load libraries and docv.R

library(MASS)

library(kknn)

source("docv.R") #this has docvknn used below

#make variable names in Boston directly available
attach(Boston)

#do k-fold cross validation, 5 twice, 10 once
set.seed(99) #always set the seed! (Gretzky was number 99)
kv = 2:100 #these are the k values (k as in kNN) we will try

#docvknn(matrix x, vector y,vector of k values, number of folds),
#does cross-validation for training data (x,y).

cvl = docvknn(matrix(lstat,ncol=1) ,medv,kv,nfold=5)

cv2 = docvknn(matrix(lstat,ncol=1) ,medv,kv,nfold=5)

cv3 = docvknn(matrix(lstat,ncol=1) ,medv,kv,nfold=10)

#docvknn returns error sum of squares, want RMSE
cvl = sqrt(cvl/length(medv))
cv2 = sqrt(cv2/length(medv))
cv3 = sqrt(cv3/length(medv))
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#plot

rgy = range(c(cvl,cv2,cv3))

plot(log(1/kv),cvl,type="1",col="red",ylim=rgy,lwd=2,cex.lab=2.0,

xlab="log(1/k)", ylab="RMSE")

lines(log(1/kv),cv2,col="blue",1lwd=2)

lines(log(1/kv),cv3,col="green",lwd=2)

legend("topleft",legend=c("5-fold 1","5-fold 2","10 fold"),
col=c("red","blue","green"),lwd=2,cex=1.5)

#get the min

cv = (cvitcv2+cv3)/3 #use average
kbest = kv[which.min(cv)]
cat("the best k is: ",kbest,"\n")

#fit kNN with best k and plot the fit.

kfbest = kknn(medv~lstat,data.frame(lstat,medv),data.frame(lstat=sort(lstat)),
k=kbest,kernel = "rectangular")

plot(lstat,medv,cex.lab=1.2)

lines(sort(lstat) ,kfbest$fitted,col="red",lwd=2,cex.lab=2)
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5.1. Problem: Using Cross Validation

We are going to use the same data as in Homework 1.
Previously, we used the “eye-ball” method to choose k for a kNN
fit for mileage predicting price.

Use 5-fold cross-validation to choose k.

How does your fit compare with the eyeball method?
Plot the data and then add the fit using the k you chose using
cross-validation and the k you choose by eye-ball.

Use kNN with the k you chose using cross-validation to get a
prediction for a used car with 100,000 miles on it.

Use all the observations as training data to get your prediction
(given your choice of k).
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6. More on k-Nearest Neighbors, p > 1

We have looked at simple examples of kNN (with one x!!).

In this section we look at kNN more carefully, in particular, how do
you use kNN when x has p variables??!!

An important advantage of kNN is that it is feasible for

BIG DATA, big n and big p.

The k-nearest neighbors algorithm will try to predict based on
similar (close) records on the training dataset.

Remember, the problem is to guess a future value Yy given new
values of the covariates X¢ = (x1f, Xof, X3f, . . ., Xpf ).
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kNN:
What do the Y'’s look like in the region around Xy ?

We need to find the k observations in the training dataset that are
close to X¢. How? “Nearness’ to the i*" neighbor can be defined
by (euclidean distance):

P
Z(Xjf — Xjj)2, ;i in training data
Jj=1

Prediction:

Take the average of the Y’s in the k-nearest neighborhood.
Average y; corresponding to k smallest d;.
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Note:

» The distance metric used above is only valid for numerical
values of X. When X’s are categorical we need to think about
a different distance metric or perform some manipulation of
the information.

» The scale of X also will have an impact. In general it is a

good idea put the X’s in the same scale before running kNN.

What do we mean by scale?

If weight is in pounds you get one distance, if weight is in
kilograms you get a different number!!
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To see how this works, let's do the Boston example with p = 2:

x1=lIstat
xo=dis: weighted mean of distances to five Boston employment
centres
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x — min(x)

X7 (max(x) — min(x))

With this scaling, x is always between 0 and 1.

You can interpret x has “% of max".

This kind of scaling is very common in practice. However, you can
have all kinds of problems. Suppose an x is heavily skewed 777
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To predict y at the blue triangle,

corresponding to the red points.

dis

we average the y values

Isat
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Here are the in-sample fits using k=30, compared with y and the
fits from a bivariate regression.

knnfits30

linfits




Here are the correlations corresponding to the plots.

y knnfits30 linfits

y 1.00 0.84  0.75
knnfits30 0.84 1.00  0.91
linfits 0.75 0.91  1.00

In sample, knn30 looks better than linear regression.

who cares !!
A big R-squared can just mean you overfit !
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3-D visualization is not easy!!!

66



Let’ do the CV and see what works out of sample.

— 5-fold 1
— 5-fold 2
10 fold

RMSE
5.6

-30 -25 -20 -15 -10

log(1/k)

Seems to indicate a much smaller k (than when we just used
lstat, but it is very noisy.
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Let’ average many CV's.

mean RMSE
6

Indicates a k of about 8, which is much smaller than when we just
had 1stat. Minimum RMSE is smaller than when we just had

lstat but not my much, 5, versus 5.2. 68



Refit using all the data and k = 8.

Here is a plot of the fits.

knngfits

linfits
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Here are the correlations corresponding to the plots.

y knn8fits linfits

y 1.00 0.88 0.75
knn8fits 0.88 1.00 0.87
linfits 0.75 0.87 1.00

In sample, knn8 looks better than linear regression.

And now we care!!
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Matching:
A lot of data-mining methods work by matching.

Which ones are most like you 77

Which training x are most like x¢ 77
Shoppers like you have bought .....

“Like” means a choice of distance, and getting the distance right
in high dimensions can be very hard.

Rescaling all the (numeric) x's is common.
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Note:

Another rescaling that people often use (besides

(x — min (x))/(max (x) — min(x))) is

(x— %)

X7 sdx)
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Big p, big n

In principle, we can use kNN for large n and p.
kNN /s a very widely used technique.

However, you should always be scared!!!

What does distance mean for big p?
Remember the curse of dimensionality 11!

Le't try Boston using more of the x's.
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Our Boston data set only has n = 506.
pis 13:
This data frame contains the following columns:

crim per capita crime rate by town.

zn proportion of residential land zoned for lots over 25,000
sq.ft.

indus proportion of non-retail business acres per town.

chas Charles River dummy variable (= 1 if tract bounds river; 0
otherwise) .

nox nitrogen oxides concentration (parts per 10 million).

rm average number of rooms per dwelling.

age proportion of owner-occupied units built prior to 1940.

dis weighted mean of distances to five Boston employment
centres.

rad index of accessibility to radial highways.

tax full-value property-tax rate per \$10,000.

ptratio pupil-teacher ratio by town.

black 1000(Bk - 0.63)"2 where Bk is the proportion of blacks by
town.

lstat lower status of the population (percent).

medv median value of owner-occupied homes in \$1000s.
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Let's try p = 4 with nox, rm, ptratio, and Istat.
Then we'll try using all the x's (p = 13).
In each case we will mechanically rescale each x to be in [0,1].

One of the x's is a 0-1 dummy (chas). Rescaling will not change it.

Does this make sense??
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Here is the 10-fold CV with p = 4.

mean RMSE

The minimum RMSE seems quite a bit better (3.9 rather than 5)
than with p =2

(we used Istat, dis).
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Here is the 10-fold CV with p = 13.

mean RMSE

k

Using more x's seems to make it worse!!

7



Refit using all the data, p =4, kK = 5.

knn5fits

linfits
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y knnbfits linfits

y 1.00
knn5fits 0.93
linfits 0.82

0.93
1.00
0.91

0.82
0.91
1.00

We have a nice result with p = 4, but | did not tell you how | got

those 4!!

79



kNN:

kNN is a powerfull, widely used, intutitive technique.

We have used it to illustrate the Bias-Variance tradeoff which
is a fundamental concept.

Note:
Choosing the distance can be tricky.

Using distance in high dimensions can be tricky.
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In R:

Let's see how to use kNN and cross-validation in R.
Let's try x1=lstat,x2=indus with the Boston data.

#get the Boston data and needed libraries

library(kknn)

library (MASS)

source("docv.R") #we’ll use Rob’s code for cross-val with kNN

#get variables we want

x = cbind(Boston$lstat,Boston$indus)

colnames(x) = c("lstat","indus")

y = Boston$medv

mmsc=function(x) {return((x-min(x))/(max(x)-min(x)))}

xs = apply(x,2,mmsc) #apply scaling function to each column of x
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#plot y vs each x

par (mfrow=c(1,2)) #two plot frames
plot(x[,1],y,xlab="1stat",ylab="medv")
plot(x[,2],y,xlab="indus",ylab="medv")

#run cross val once

par (mfrow=c(1,1))

set.seed(99)

kv = 2:20 #k values to try

n = length(y)

cvtemp = docvknn(xs,y,kv,nfold=10)

cvtemp = sqrt(cvtemp/n) #docvknn returns sum of squares
plot (kv,cvtemp)
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#run cross val several times
set.seed(99)
cvmean = rep(0,length(kv)) #will keep average rmse here
ndocv = 50 #number of CV splits to try
n=length(y)
cvmat = matrix(0,length(kv) ,ndocv) #keep results for each split
for(i in 1:ndocv) {
cvtemp = docvknn(xs,y,kv,nfold=10)
cvmean = cvmean + cvtemp
cvmat[,i] = sqrt(cvtemp/n)
}
cvmean = cvmean/ndocv
cvmean = sqrt(cvmean/n)
plot (kv,cvmean,type="n",ylim=range(cvmat) ,xlab="k",cex.lab=1.5)
for(i in 1:ndocv) lines(kv,cvmat[,i],col=i,1lty=3) #plot each result
lines(kv,cvmean,type="b",col="black",lwd=5) #plot average result
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#refit using all the data and k=5

ddf = data.frame(y,xs)

near5 = kknn(y~.,ddf,ddf,k=5,kernel = "rectangular")
1mf = lm(y~.,ddf)

fmat = cbind(y,near5$fitted,lmf$fitted)

colnames (fmat)=c("y","kNN5","linear")

pairs(fmat)

print (cor(fmat))

#predict price of house in place with lstat=10, indus=11.

x1=10; x2=11

x1s = (x1-min(x[,1]))/(max(x[,1])-min(x[,1]))

x2s = (x2-min(x[,2]))/(max(x[,2])-min(x[,2]))

near = kknn(y~.,ddf,data.frame(lstat=xls,indus=x2s),k=5,kernel = "rectangular")
cat("knn predicted value: ",near$fitted,"\n")

#what does a linear model predict?
print(predict(1mf,data.frame(lstat=x1s,indus=x2s)))
#let’s check we did the scaling right

Imtemp = lm(medv~lstat+indus,Boston)

print (predict(lmtemp,data.frame(lstat=10,indus=11)))
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6.1. Problem: kNN, Cars Data with Mileage and Year

Use kNN to get a prediction for a 2008 car with 75,000 miles on it!

Remember:

(i)

Use cross-validation to choose k.

(i)

Scale your x's !

Is your predictive accuracy better using (mileage,year) than it was
with just mileage?
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7. Doing CV with a Bigger n

The Boston housing data we have been using as an example only
has n = 506 observations.

While the big ideas are the same, some things will work out
differently with larger n.

Let's do n = 20,000 to illustrate.
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The key differences will be:

(1)

We won't have to rerun the CV many times and average.
With the larger sample size, you will get much less variation in the
CV results.

(2)
We will start by leaving out a “test” data set.

We will use CV on the remaining data to make modeling decisions,
and then apply our data to the test data to see you well we predict
out of sample.

when we refit using all the Boston data, we did not have any true
out-of-sample data !!.
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kNN: California Housing

Data: Median home values in census tract plus the following
information:

» Location (latitude, longitude)
» Demographic information: population, income, etc...
» Average room/bedroom number, home age

> Let's start using just location as our X’s... euclidean distance
is quite natural here, right?

Goal: Predict log(MedianValue) (why logs? more on this later)
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There are 20,640 observations and 8 x's.
We should spend a long time plotting the data, but let's suppose

we are in a hurry.

A couple of plots:

y=logMedVal

vs longitude and
latitude.
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y=logMedVal
vs median income.

logvieaval
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100

income

CA-log-lat-y.pdf
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knnLL$rmse

10,000 in train. Rest in test. Standardize each x:

Do 5-fold cross-validation on train.

Red: longitude and latitude
Blue: longitude and latitude and Income
Green: all 8 x's (2 runs).

027 028 029 030 031 032 033
T
knnLLI$rmse
027 028 029 030 031 032 033

T T T T T T
s 10 15 20 s 10 15 20 2 EY
kvLL kvLLl

Pretty small k values.
All x is worst.

(x-m)/s.

knnA$rmse
027 028 029 030 031 032 033
T

T
5 10

T
15
kvA

T
20
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Using the best k, fit using all the train data, predict on the test.

10 us 120 125 130 mo ms 120 125 130

120 125 130

10 us

20 125 130

1m0 us
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Here are the correlations between the test y=logMedVal and the
(out-of-sample!!) predictions.

y LL LLI A
y  1.0000000 0.8963260 0.8877891 0.8615422
LL 0.8963260 1.0000000 0.8788248 0.8323511
LLI 0.8877891 0.8788248 1.0000000 0.9061848
A 0.8615422 0.8323511 0.9061848 1.0000000
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And, here are the rmse’s on the test data.

rmse test, long,lat: 0.2533981
rmse test, long,lat,income: 0.2628331
rmse test, all: 0.2897788

location, location, location......
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