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1. Continuous Random Variables

Sometimes it is inconvenient to list out all the possible values a
random variable can take on.

For example, we don’t want to list all the possible times a patient
could live for.

In this case we let our random variables take on on value in R, or
any value in a subset of R.

For example we might think of the time our patient live to be any
value in the subset of R given by {x ; x > 0}.
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In this case our random variable (or vector) is a continuous random
variable.

For continuous random variable we don’t talk about the probability
of a particular value, we can only talk about about the probability
of a set.

We use the probability density function (pdf) fx to specify the
probability of a set A by

p(X ∈ A) =

∫
A
fx(x) dx

2



Example, the Uniform

We write X ∼ U(a, b).
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Example, the Normal

We write X ∼ N(µ, σ2).
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Basic Properties

The basic properities we had in the discrete case extend to the
continous case:

f (y1, y2, y3, . . . , yn) = f (y1) f (y2 | y1) f (y3 | y1, y2) f (yn | y1, y2, . . . , yn−1)

If the Yi are independent then

f (y1, y2, . . . , yn) =
n∏

i=1

f (yi )
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Margining out:

f (y1) =

∫
f (y1, y2) dy2

Conditional:

f (y1 | y2) =
f (y1, y2)

f (y2)
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Bayes theorem:

f (y2 | y1) ∝ f (y2) f (y1 | y2)

= f (y1, y2)
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2. Expection, Mean, Variance, Covariance

Let Y be a random variable (or vector).

Sometimes we want to summarize the possible values of some
function of Y .

We use a probability weighted average:

Discrete:
E (h(Y )) =

∑
h(y)p(y)

Continuous:

E (h(Y )) =

∫
h(y) f (y) dy
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The key examples are the mean and variance of a univariate
random variable.

The Mean:

h(y) = y

E (Y ) =
∑

y p(y) (discrete)

=

∫
y f (y) dy (continuous)

We often write µ or µy for E (Y ).
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The Variance:h(y) = (y − µ)2.

Var(Y ) =
∑

(y − µ)2 p(y) (discrete)

=

∫
(y − µ)2 f (y) dy (continuous)

We often write σ2 or σ2
y for Var(Y ).

The Standard Deviation:

σ =
√

(σ2)

is the standard deviation.

Note that σ has the same units as Y .

The variance and standard deviation summarize how close a
random variable tends to be to its mean.
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Example, the Bernoulli:
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Example, the Normal:

You can show that for X ∼ N(µ, σ2),

E (X ) = µ, Var(X ) = σ2, σX = σ.

A small σ means the distribution is “tight” around µ !! 12



Expectation of Linear Functions:

If h(X ,Y ) = a + b X + c Y then,
E (h(X ,Y )) = a + b E (X ) + c E (Y ).

E (h(X ,Y )) =
∑
(x ,y)

p(x , y)(a + bx + cy)

= a
∑

p(x , y) + b
∑

x p(x , y) + c
∑

y p(x , y)

= a + b
∑

x p(x) + c
∑

y p(y)

= a + bE (X ) + cE (Y )

More generally,

E (a +
∑

bi Yi ) = a +
∑

biE (Yi )
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Covariance and Correlation:

The covariance and correlation are used to measure how much one
random variable looks like a linear function of another.

Let E (Y1) = µ1 and E (Y2) = µ2.

h(y1, y2) = (y1 − µ1)(y2 − µ2).

Cov(Y1,Y2) = E ((Y1 − µ1)(Y2 − µ2)).

We might write σX ,Y for Cov(X ,Y ), or σ12 for Cov(Y1,Y2).
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The Correlation

Let σi be the standard deviation of Yi .

Cor(Y1,Y2) =
σ12

(σ1 σ2)
.

The covariance divided by the product of the the standard
deviations.

We might write ρXY for Cor(X ,Y ) for ρ12 for Cor(Y1,Y2).

15



Key Property of Correlation:

−1 ≤ ρX ,Y ≤ 1

The correlation is always between 1 and -1.

The closer the correlation is to 1, the more Y ≈ a + bX
with b > 0.

The closer the correlation is to -1, the more Y ≈ a + bX
with b < 0.
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Independence, Expectation, and Correlation:

Suppose X and Y are independent random variables.

Then E (XY ) = E (X )E (Y ).

E (XY ) =

∫ ∫
xy f (x , y) dxdy

=

∫ (∫
xy f (x)f (y) dy

)
dx

=

∫
x f (x)

(∫
y f (y) dy

)
dx

=

(∫
x f (x)dx

)(∫
y f (y)dy

)
= E (X )E (Y )
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In the discrete case with X ∈ {x1, x2} and Y ∈ {y1, y2} we have

E (X )E (Y ) = (p(x1)x1 + p(x2)x2)(p(y1)y1 + p(y2)y2)

= (p(x1)x1p(y1)y1 + p(x1)x1p(y2)y2+

(p(x2)x2p(y1)y1 + p(x2)x2p(y2)y2+

=
∑

xixjp(xi )p(yj)

=
∑

xixjp(xi , yj)

= E (XY )
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Suppose X and Y are independent.

Then,

σXY = E ((X − µX )(Y − µy ))

= E (X − µ)E (Y − µ)

= 0× 0 = 0

Independent ⇒ ρXY = 0, but not the other way around.
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Variance of a linear function

Suppose Z = a + b X + c Y .

Z − E (Z ) = b (X-E(X)) + c (Y-E(Y)).

(Z − E (Z ))2 =
b2(X − E (X ))2 + c2(Y − E (Y ))2

+bc (X − E (X ))(Y − E (Y )) + bc (X − E (X ))(Y − E (Y )).

Var(Z ) = b2Var(X ) + c2Var(Y ) + 2bc Cov(X ,Y ).
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More generally, if Y = a +
∑

bi Xi then

Var(Y ) =
∑

b2
i Var(Xi ) +

∑
i 6=j

bibjCov(Xi ,Xj).

=
∑

b2
i Var(Xi ) + 2

∑
i<j

bibjCov(Xi ,Xj).
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Variance (Covariance) Matrix of a Random Vector

Suppose X = (X1,X2, . . . ,Xp).

Let σii = Var(Xi ) and σi ,j = Cov(Xi ,Xj).

Then the matrix with (i , j) element equal to σij is the variance
matrix, or variance-covariance matrix of X .

We often use Σ to denote this matrix.

Σ = [σij ].
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Mean and Variance of a Linear Function with Matrix Notation

Let X = (X1,X2, . . . ,Xp)′ and b = (b1, b2, . . . , bp)′ ∈ Rp.

Let E (X ) = (E (X1),E (X2), . . . ,E (Xp))′ = µ′

We have,

E (a + b′X ) = a + b′µ.

And,

Var(a + b′X ) = b′Σ b
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Iterated Expectations:

Let f (X ,Y ) be a function of the random variables X and Y .

Let p(x , y) be the joint density.

E (f (X ,Y )) =

∫
f (x , y)p(x , y) dxdy

=

∫
f (x , y)p(y | x)p(x) dxdy

=

∫
p(x)[

∫
f (x , y)p(y | x) dy ] dx

=

∫
E (f (x ,Y ) | x) p(x)dx

= EX (EY |X (f (X ,Y )))

For example, E (Y ) = EX (E (Y | X )).
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Example:

This one comes up from time to time:
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3. Statistical Decision Theory

See section 2.4, Elements of Statistical Learning, “Statistical Decision Theory”.

Suppose we want to guess the random variable Y .
Let m be a possible guess and µ = E (Y ).

Let’s choose the guess that minimizes the expected squared error:

So, the best choice is m∗ = µ.
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Now suppose we have (X ,Y ) where X is a random vector and Y
is a random variable.

Let µ(x) = E (Y | X = x).

We want to minimize the expected squared error if we predict Y
using f (X ).

Clearly, the optimal function is f ∗(x) = µ(x).
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Minimizing Expected Loss

In general, we specify a loss function L(y , a(x)).

Given the information in x we can choose an action, and we incur
a loss which depends on our action and the outcome y .

We then minimize the the expected loss, where the expectation is
taken over the joint distribution of (X ,Y ):

minimize
a

E (L(Y , a(X ))

We just did L(y , a(x)) = (y − a(x))2.
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Note:

In principle, we should pick losses that are meaningful given the
actual applied setting.

As a practical matter, we often use choose generic loss functions in
order to devise general methods.

We just used the generic loss L(y , a(x)) = (y − a(x))2 which is by
far the most commonly used loss for a numeric outcome.

For example if L(y , a(x)) = |y − a(x)| then the optimal action is
the median of the conditional distribution Y | X = x rather than
the mean.
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4. The Bias Variance Tradeoff
We have studied the bias-variance tradeoff informally.

Following ISLR, section 2.2.2 and ESL section 7.2, we can
formalize this a bit.

We will assume the model

Y = f (X ) + ε

where ε is independent of X .

Our setup is that we have training data (xi , yi ) generated under
our model so that Yi = f (xi ) + εi .

We are predicting at a specific x0 and

Y0 = f (x0) + ε

where ε is independent of the training data. 30



We want to consider the variation due the training data (Xi ,Yi )
and the variation due to Y0 (which is due to ε).

Given the training date we assume we have an algorithm for
generating f̂ and estimate of f .

Given the particular choice x0, we can then think of f̂ (x0) as a
random variable where the variation is driven by the random
training data.

We consider
E (Y0 − f̂ (x0))2.

The expection is over the random variable Y0 (driven by ε) and the
random variable f̂ (x0) (driven by the training data). These two
random variable are independent.
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Example:

If our statistical learner is multiple regression then our model is

Y = x ′β + ε

and
f̂ (x0) = x ′0β̂,

where β̂ is the usual regression estimator of β.

Example:

If we use KNN for a fixed k, then we do get a f̂ (x0) that depends
on the training data and this is what we simulated in our previous
notes.

However KNN does not fit into the Y = f (X ) + ε setup and we
don’t have a simple parameter related restricting the choice of f .

32



Note:

If E(Y) =0 then

E ((a + Y )2) = E (a2 + 2aY + Y 2)

= a2 + 2aE (Y ) + E (Y 2)

= a2 + Var(Y )

Note:

If X and Y are uncorrelated (in particular, if they are independent)
then

Var(X + Y ) = Var(X ) + Var(Y )
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E (Y0 − f̂ (x0))2 = E [((f (x0)− f̂ (x0)) + ε)2]

= E [((f (x0)− E (f̂ (x0))− (f̂ (x0)− E (f̂ (x0)) + ε)2]

= (f (x0)− E (f̂ (x0))2 + Var(f̂ (x0)) + Var(ε)

= (the bias squared) + (the variance) + (irreducible error)

The “irreducible error” is the variation in the part of Y0 we cannot
learn from X .

Even if we knew f , we would still have this.

If we make f̂ more complicated we expect the bias to go down and
the variance to go up !!!!!!!
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5. The Behaviour of a Mean

We do a lot of averaging !!!

Suppose Wi are iid with E (Wi ) = µ and Var(Wi ) = σ2.

W̄ =
1

n

∑
Wi .

Then,

E (W̄ ) =
1

n

∑
E (Wi )

=
1

n
nµ

= µ
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Var(W̄ ) =
1

n2

∑
Var(Wi )

=
1

n2
nσ2

=
σ2

n

So, as n gets big, the distribution of W̄ tightens up around E (W )
!!
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In fact, by the central limit theorem,

W̄ ≈ N(µ, σ2/n)

so that,
W̄ ≈ µ± 2

σ√
n

with 95% probability.
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In theory, we have W = L(Y , a(X )) and we want an action
function a(X ) which makes our expected loss small:

E (W ) = E (L(Y , a(X )).

In practice, we estimate this with

W̄ =
1

n

∑
L(Yi , a(Xi ))

where we average over the test data.
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In practice we have to use data to come up with our action, see we
also have the training data:

T = (X t ,Y t)

Then, we “learn” our action using the training data:

â(x , γ) = a(x ,T , γ)

where γ is a tuning parameter (e.g k in KNN).
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We then have a loss which depends on our action and the future Y .

We get to see X to help us guess Y :

L(Y , â(X , γ))

we want an action scheme that minimizes

EY ,X ,TL(Y , â(X , γ))

Cross validation is supposed to estimate this expectation!!!
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So, the size of the test data help us estimate the expecation over
(X ,Y ).

The observations within the test data are independent.

The number of folds is the number of draws we have of the
training data.

Are they indepedent?

Why is leave one out at at time (loocv) such a bad idea?
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