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1. Logistic Regression

Logistic regression is a key model.

It allows us to use ideas from linear modeling to predict a binary
outcome.

The model is:

e’

P(Y =1]x) = F(XB), Fn)= 1

Note that F : R — (0, 1).



To start off as simply as possible, we will first consider the case
where we have a binary y and one numeric x.

Lets’ look at the Default data (from the ISLR book):
> y:

whether or not a customer defaults on their credit card
(No or Yes).

> x:

The average balance that the customer has remaining on their
credit card after making their monthly payment.

» 10,000 observations, 333 defaults (.0333 default rate).



Let's look at the data.
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Logistic regression uses the power of linear modeling and estimates
Pr(Y =y | x) by using a two step process:

> Step 1:
apply a linear function to x: x — n = By + B1x.
> Step 2:

apply the logistic function F,
to n to get a number between 0 and 1.

P(Y =1|x)=F(n).



The logistic function:

W= S
F(n) =
1+ en
1 H
 1l4en
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The key idea is that F(n) 34
is always between 0 and
1 so we can use it as a
probability. Eh
Note that F is increas-
ing, so if n goes up ER
P(Y =11 x) goes up. M M .

F(=3) = .05, F(—2) =.12, F(—1) = .27
F(0) =5
F(1) = .73, F(2) = .88, F(3) = .95



Logistic fit to the y=default, x=balance data.

First, logistic looks for a linear
function of x it can feed into
the logistic function.

Here we have
n = —10.65 + .0055 x.

Next we feed the 1 values into
the logistic function.

100 randomly sampled obser-
vations are plotted with red
dots.

We can combine the two steps
together and plot
x=balance vs.

P(Y = Yes | x) = F(—10.65 + .0055 x).

eta = -10.65 + 0055 balance.

etavs. Fleta)

xebalance vs. P(Y=Yes | balance)




Logistic Regression:

Combining the two steps, our logistic regression model is:

P(Y =1| X =x) = F(Bo + p1x).

x=balance vs. P(Y=Yes | balance)

Yes | x=paiance)
06

PY=

o 1500
x=balance



Multiple Logistic Regression

We can extend our logistic model to several numeric x by letting n
be a linear combination of the x's instead of just a linear function
of one x:

> Step 1:
n=7PF0+Bixi+Baxa+...8oxp=xJ.

> Step 2:
P(Y=1|x=(x1,x,...,%)) = F(n).



Or, in one step, our model is:

Y; ~ Bernoulli(p;), pi = F(x'f3).

Our first step keeps some of the structure we are used to in linear
regression.

We combine the x's together into one weighted sum that we hope
will capture all the information they provide about y.

We then turn the combination into a probability by applying F.

Inference is as in the p = 1 case discussed previously except now
our likelihood will depend on (Bo, f1, ..., Bp) instead of just

(Bo, B1)-



Log Odds
Our model is:
Y =1 e
p( - |X7ﬂ)_1—|—exlﬁ

> (¥ =1]x,6)
p(Y =1]x,
(Y = 11x.5)

)=x'8.

The log of the odds ratio Y=1 vs Y=0, is linear in x.

For example:

P(Y =1|x,8) =.5 <= logodds=0 < x'3=0.
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The Default Data, More than One x

Here is the logistic regression output using all three x's in the data
set: balance, income, and student.
student is coded up as a factor, so R automatically turns it into a
dummy.
Call:
glm(formula = default ~ balance + student + income, family = binomial,
data = Default)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4691 -0.1418 -0.0557 -0.0203 3.7383
Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 **x

balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
studentYes -6.468e-01 2.363e-01 -2.738 0.00619 *x*
income 3.033e-06 8.203e-06 0.370 0.71152

Signif. codes: 0 *x* 0.001 **x 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2920.6 on 9999 degrees of freedom

Residual deviance: 1571.5 on 9996 degrees of freedom

AIC: 1579.5

Number of Fisher Scoring iterations: 8
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Note:

Number of Fisher Scoring iterations: 8

The estimates are MLE.

The maximization uses Newton's method which is an iterative
procedure.

It took 8 iterations for the maximization to converge !!!
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The estimates are MLE.

Confidence intervals are estimate + /- 2 standard errors.
e.g for studentYes coefficient : -.65 +/- 2(.24) = -.65 +/- .5

Z-stats are (estimate-proposed)/se.

To test whether the coefficient for income is 0, we have z =
(3.033-0)/8.203 = .37, so we fail to reject.

The p-value is 2*P(Z < -.37) = 2*pnorm(-.37) = 0.7113825.

13



So, the output suggests we may not need income.

Here is a plot of the fitted probabilities with and without income
in the model.

We get almost the same probabilities, so, as a practical matter,

income does not change the fit.
14



Here is the output using balance and student.

Call:
glm(formula = default ~ balance + student, family = binomial,
data = Default)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.4578 -0.1422 -0.0559 -0.0203 3.7435

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.075e+01 3.692e-01 -29.116 < 2e-16 **x
balance 5.738e-03 2.318e-04 24.750 < 2e-16 x¥x*
studentYes -7.149e-01 1.475e-01 -4.846 1.26e-06 **x

Signif. codes: 0 **x* 0.001 **x 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2920.6 on 9999 degrees of freedom

Residual deviance: 1571.7 on 9997 degrees of freedom

AIC: 1577.7

Number of Fisher Scoring iterations: 8



P(Y = 1| x = (balance, studentYes)) =
F(—1.075 + .005738 balance — .7149 studentYes)

With just balance and student in the model, we can plot
P(Y =1]x) vs. x.

The orange points are
for the students and the ER
blue are for the non-
students.

In both cases the proba-
bility of default increases
with the balance, but at
any fixed balance, a stu-
dent is less likely to de- ER
fault.

Pv=110

T
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AIC and BIC in Logistic Regression

In the logistic regression model, the deviance is just -2 times the
logLikelihood (usually evaluated at the mle).

L(B) =[] P(Y = yilX = x:, B)

i=1

For logistic regression, P(Y = 1|x,8) = F(x'B), F(n) = %.

Given an estimate (usually a MLE) §,

deviance = —2 Z log(P(Y = yi| X = x,-,,@))
i=1

The better the fit of the model, the bigger the likelihood, the

smaller the deviance.
17



AIC for the Default example:
A parameter (a coefficient) costs 2.

> balance:
Residual deviance: 1596.5, AIC: 1600.5 = 1593.5+2%*(2).

» balance + student 4 income:
Residual deviance: 1571.5, AIC: 1579.5 = 1571.5 +-2*(4).

» balance + student:

Residual deviance: 1571.7, AIC: 1577.7 = 1571.7 + 2*(3).

» student:

Residual deviance: 2908.7, AIC: 2912.7 = 2908.7 + 2*(2).

= pick balance+student
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BIC:
BIC is an alternative to AIC, but the penalty is different.

BIC = deviance + log(n) * (p + 1)

log(n) tends to be bigger than 2, so BIC has a bigger penalty, so it
suggest smaller models than AIC.

19



BIC for the Default example:

log(10000) = 9.21034.

A parameter (a coefficient) costs 9.2.

» balance:

1596.5, BIC: = 1593.5 + 9.2%(2) =1611.9.

» balance + student 4+ income:
BIC: = 1571.5 + 9.2*(4) = 1608.3.

» balance + student:
BIC: = 1571.7 4+ 9.2%(3) = 1599.3.

» student:
BIC: = 2908.7 + 9.2%(2) = 2927.1.

= pick balance+student
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Which is better, AIC or BIC??
nobody knows.

R prints out AIC, which suggests you might want to use it, but a
lot of people like the fact that BIC suggests simpler models.

A lot of academic papers report both AIC and BIC and if they pick
the same model are happy with that. Lame.

Checking the out of sample performance is safer 1!

21



2. The Logistic Likelihood

We have a very general intuition that we can use the negative log
likelood as a measure of fit on training data.

In linear regression with iid normal errors, we saw that the form of

the log likelihood is very intutive in terms of the error sum of
squares.
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In the linear case we had:

i ~ R, ‘
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So the contribution of each observation to the loss is

(vi—x(B)? = (yi — Bo— B1xi1 — - - — Bpxip)?
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So in the linear case, miminizing the log likelihood is the least
squared problem and the LASSO could be written

p
miniﬂmize — log(L(5)) + )\Z |B; .

J=1
We follow exactly this approach for logistic regression.

But, let’s have a closer look at the log likelihood and see if it is
intuitive!!
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For logistic regression we have:
~t
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So, for an individual observation the contribution is -log(prob of

what happened).
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prob of what happened
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3. L2 and L1 Regularized Logisitic Regression

For linear models, we found that regularized versions gave us a
very nice way to explore the bias-variance tradeoff.

We added a penalty term whose weighting parameter A controlled
the extent to which the coefficients were shrunk towards 0.

We would like to be able to do the same thing with logistic
regression.

We want regularized logistic regression.

27



L2:

To get the ridge regression of logistic regression we just add the L2
penalty:

. . . A
m|n|ﬂm|ze — log(L(B)) + 5 2512

L1:

To get the Lasso regression of logistic regression we just add the
L1 penalty:

miniﬁmize — % log(L(ﬁ)) + )‘Z |Bj’

As in our discussion of the deviance, —log(L(f)) is a measure of
fit on the training data.
Big L means good fit, so small —log(L(/3)) means good fit.
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4. Simulated Example

Let's look at a simulated example from the “Elements of
Statistical Learning” (library(ElemStatLearn)) R package.

Description
This is a simulated mixture example with 200 instances
and two classes. 100 members in each class.

We have two numeric x's creatively called x; and x» and one
binary outcome y.

29



Plot the data: two numeric x and a binary y.

o
y=1
y=0

~
-
]
X
o 4

-2 -1 0 1 2
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Now let's run logistic regression so y on x, throwing in more and
more polynomials in x; and x;.

We use the R function mpoly to construct all the polynomials.

31



Decision Boundary plots of logit fits with varying degrees of

polynomial terms thrown in.

linear second order

third order

7th order 10th order

15th order

which one do you like the best 777
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Ok, now let's try the Lasso.

We will throw in all the 15th order terms.

> 15%14/2 + 2x%15
[1] 135

Of course, the fit using all of these is overfit.

But, can we use the Lasso to explore the possibility that some
subset of the 135 is good?

33



33 27 28 25 22 17 20 19 13 8 93332111 1 o 20 2 27 29 38 33

Binomial Deviance.
Coefficients

log(Lambda) L1 Norm

Lasso: min lambda decision boundary Lasso: min lambda 1se decision boundary

X2

Both of these look reasonable.
We got to try using all 135 x's, but the cv process pulls us back to
something more restrained. 34



What transformations did the Lasso choose?

Here are the non-zero coefficients from lambda.min.

(Intercept) x.1.0 x.2.0 x.3.0 x.7.0

-2.495723e+00 9.241824e-01 1.000302e+00 -4.584982e-01 1.136215e-03

x.8.0 x.15.0 x.0.1 x.3.1 x.2.2

1.362927e-04 -3.150041e-08 2.922533e+00 -4.609735e-02 -2.478831e-01

x.3.2 x.8.2 x.1.3 x.7.3 x.8.3

-1.885774e-01 3.671665e-04 7.296183e-02 1.149181e-04 1.348425e-04
x.0.4 x.2.7 x.0.15

-1.329917e-01 4.745585e-03 1.255572e-06

Wow, xf X x32 comes in, not obvious!!

Here are the non-zero coefficients from lambda.lse.

(Intercept) x.0.1
-0.5352522 0.6994122

And the simple model is just use xo which is clearly a reasonable
choice give the plot of the data. 35



Here are the results for Ridge regression.

Einomial Devance.

195 135 135 135 135 135 135 135 135 135 135 135 135

135 155

135

log(Lambaa)

Ridge: min lambda decision boundary

Ridge: min lambda 1se decision boundary

L1Nom

i

What x do you think the big coefficient is for?
Note that the default choice of A grid does not give us the bottom

of the U.
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Here are the largest absolute values of the Ridge coefficients at
lambda.min.

x.0.1 (Intercept) x.1.1 x.0.2 x.1.2 x.2.0
1.029880622 0.829649432 0.119507976 0.062205441 0.059446543 0.053133363
x.2.1 x.2.2 x.1.0 x.3.0 x.3.2 x.0.3
0.042759327 0.030234643 0.024597247 0.023377217 0.021276924 0.021120811
x.3.1 x.0.4 x.1.3 x.3.3 x.3.4 x.2.3
0.016565883 0.008242392 0.008133289 0.006167556 0.002953760 0.002925370
x.0.5 x.4.2

0.002846589 0.002766778

So, xp (same as x.0.1) dominates the fit.
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5. We8There

Each observation consists of a restaurant review.

We also have the Zagat ratings for each restaurant.
We want to see how the Zagat rating relates to reviews.

What kind of customer review correspond to a good rating?

38



We have 6,166 observations.

Here are the Zagat ratings summarized:

1 2 3 4 5
615 493 638 1293 3127

We will dichotomize the outcome by making y 1 if the overall
rating is greater than 3 and 0 otherwise.

y
0 1
1746 4420

39



What is our x?

We want to use the information in the text of the restaurant
reviews.

How do we convert the text of a review into a numeric x77?

40



Bag of Words:

The most common way to look at a text document is to treat it as
a bag of words.

That is, we look all the words in all the documents and then make
a list of words or “terms” of interest.
For example the word “the” will probably occur with some

frequency, but that may not be deemed to be of interest.

Given the list of terms, we just count the number of times each
term occurs in the text of the document.

Note that this approach ignores the word order, the document is
treated as a “bag of words".

41



bigrams:
A bi-gram is just a pair of words appearing in sequence.

For example, the pair of words “good food” appearing in sequence
may mean more than “good” or “food” by themselves.

We will make a list of bigrams and then x will the number of times
each bigram occurs in the text of a review.

42



The dimension of our X matrix is:

[1] 6166 2640
There are 2,640 bigrams in our list of ones we are counting.

In our first observation, the bigrams with a non-zero count are:

even though larg portion mouth water red sauc babi back back rib
1 1 1 1 1 1
chocol mouss veri satisfi
1 1
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Here is the Lasso fit:

1087 1979 1973

1977 1083

1955

1927

1863

1750

1508

1364 1065

786 544 275

125 52

10

1

Binomial Deviance

-10

1933

Log(n)

1977

1086

Coefficients
o
L

T
5000

L1 Norm

10000
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Here is the number of non-zero coefficients plotted against .

cvftsgimnetsdf

500

1000

2000

conoaBTE

1500

00 6
0000009

o0
0°

003

cvftsgimnetslambda

004

005

Lines drawn at lambda.min and lambda. 1se.

006
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Here are the big positive and big negative coefficients.

Big positive coefficients:

[1]
[4]
7
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[1]
[8l
[15]
[22]
[29]

"between two" "can wait"
"high recommend" "friend help"
"melt mouth" "food delici"
"portion huge" "wonder experi"
"veri uniqu" "full bar"
"absolut best" "quit few"
"definit recommend" "well worth"
"now live" "great food"
"never bad" "great experi"
"friend staff" "up good"

"beef sandwich"
"best meal"
"cannot wait"
"(Intercept)"
"can beat"
"pretti quick"
"out world"
"look out"
"wall cover"
"better most"

.4459899 1.3316980 1.3237462 1.2484781 1.2132905 1.1862732 1.0833840
.0793705 1.0423435 1.0192066 1.0181292 1.0002271 0.9845197 0.9587790

.8947595 0.8946222 0.8938340 0.8634556 0.8444782 0.8410676 0.8241613

1
1
0.9575706 0.9497676 0.9415397 0.9374915 0.9246989 0.9202393 0.9058902
0
0

.8214257 0.8107087

Big negative coefficients:

[11
[5]
[9]
[13]
[171
[21]
[25]
[29]
[1]
(8]l
[15]
[22]1
[29]

"never again" "over cook"

"bad food" "servic slow"
"one worst" "mani option"
"wast money" "veri disappoint"
"terribl servic" '"veri bland"
"never go" "gone down"

"stay away" "never return"
"veri rude" "extrem rude"

-1

"just ok" "food poison"
"mediocr food" "servic ok"
"anoth chanc" "food okay"
"food averag" "veri slow"
"quick lunch" "veri poor"
"servic terribl" "food terribl"
"far better" "mediocr best"

.420524 -1.451175 -1.468437 -1.492984 -1.494989 -1.508403 -1.522948
.526853 -1.537638 -1.590144 -1.590993 -1.597658 -1.631075 -1.667879
.689573 -1.692264 -1.705060 -1.724742 -1.735298 -1.765058 -1.888206
.936099 -1.963851 -1.989629 -2.024686 -2.059428 -2.183805 -2.190360

.259374 -2.434841

Not surprising that it is bad to be “extrem rude”.
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Here are Ridge results.
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Big positive coefficients:

[1] "(Intercept)" "coconut shrimp" "look out" "veri uniqu"

[56] "year food" "servic attent" "friend help" "well food"

[9] "everyth menu" "half shell" "veri cozi" "absolut best"
[13] "absolut delici" "serv hot" "staff make" "same peopl"
[17] "fair price" "can beat" "between two" "excel price"
[21] "salad great" "cannot wait" "restaur make" "time re"

[25] "back home" "best meal" "food superb" "thorough enjoy"

[29] "reserv suggest" "keep go"
[1] 0.9126494 0.6568706 0.6541469 0.6532986 0.6495907 0.6485409 0.6415978
[8] 0.6413095 0.6396719 0.6378453 0.6257804 0.6232927 0.6146492 0.6085780
[15] 0.6063171 0.6015257 0.6008904 0.5989794 0.5986393 0.5957714 0.5942530
[22] 0.5889521 0.5856139 0.5836239 0.5766060 0.5764588 0.5733635 0.5724580
[29] 0.5715484 0.5708517

Big negative coefficients:

[1] "one worst" "anoth chanc" "just anoth" "day befor"

[6] "veri disappoint" "quick lunch" "food mediocr" "veri poor"

[9] "wast money" "servic slow" "terribl servic" "servic ok"
[13] "got bill" "stay away" "food terribl" "mani option"
[17] "veri limit" "servic terribl" ‘"complain manag" ‘"veri bland"
[21] "just ok" "mediocr food" "food averag" "veri rude"
[25] "food okay" "veri slow" "mediocr best" "gone down"
[29] "far better" "extrem rude"

[1] -0.8566305 -0.8635339 -0.8699492 -0.8787698 -0.8881075 -0.8920423
[7] -0.9201352 -0.9373039 -0.9438574 -0.9541782 -0.9581192 -0.9590981
[13] -0.9771998 -0.9841832 -0.9843469 -0.9920617 -1.0010190 -1.0014385
[19] -1.0104797 -1.0179680 -1.0222027 -1.0260030 -1.0503238 -1.0819638
[25] -1.0859973 -1.0939149 -1.1249573 -1.1382567 -1.2025776 -1.2955933



6. Multinomial Logit

The problem where Y is a binary outcome is very common.

But how do we extend logistic regression to the multinomial
outcome case?

Let's look at the forensic glass data and use two of the x's (so we
can plot) and all three of the outcomes.
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Example, Forensic Glass:

Can you tell what kind of glass it was from measurements on the
broken shards??

Y: glass type, 3 categories.
Y € S = {WinF, WinNF, Other}.

WinF: float glass window
WinNF: non-float window
Other.

x: 3 numeric x's:

x1 = RI: refractive index
x> = Al

x3 = Na

50



Let's use two of the x's (so we can plot) and all three of the
outcomes.
Here is the three outcome Y plotted agains the two x's x=(RI,Al).

Al RI

1.0
1.0
1.0

—_ B

v : - :

0.8
0.8
0.8

0.6
0.6
0.6

Al
0.4

0.4
0.4

0.2
0.2
0.2

0
0

0.0

. T Ch T . o"w T T T T T
WinF WinNF Other WinF WinNF Other 00 02 04 06 08 10
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kNN:

Before we go into the linear multinomial model, let’s just note that
KNN for classification is obvious.

Given test x and training (x;, y;):

Numeric Y :

» find the k training observations with x; closest to x.

» predict y with the average of the y values for the neighbors.

Categorical Y:

» find the k training observations with x; closest to x.

» predict Y with the most frequent of the y values for the
neighbors.

» estimate P(Y = y | x) with the proportion of neighbors
having Y = y.
52



Multinomial Logit:
The multinomial logit model for Y € {1,2,...,C} is

P(Y = jlx) cxexp(x'8)), j=1,2,...,C.

exp(x’'B;)

P =I5 o)

So, each category gets a linear (affine) function of x !!!
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Softmax Function:

For x = (x1,x2,...,xc) The softmax function is

e

o(x);j = > &

Exponentiate and then normalize.

Takes a vector of real numbers x; and maps them to a probability
vector.

We use this a lot.
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Identification:

Suppose we add 3 to each ;.

. exp(x'(8;j + B)
PYZI0 = S a5+ )
exp(x' ) exp(x’'5;j)
exp(x'B) 3 exp(x'5))
exp(x'B;)

2 exp(xX' )

So, if we add any vector to all the 3; we get the exact some
model!!

In this case we say the the set of parameters {f3;} is not identified
in that two different sets can give you the exact same likelihood.
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The common identification strategy is to pick one of the ; and set
it equal to 0. Usually, it is either the “first” or the “last” f3;.

Note that as usual x may be (1,x2,...,Xxp), that is we have
included an intercept.
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Here is ouput from fitting a multinomial logit using the forensic
glass data.
( R package nnet, function multinom).

Call:
multinom(formula = y ~ ., data = ddf, maxit = 1000)

Coefficients:

(Intercept) RI Al
WinNF  -3.277900 2.819056 7.861631
Other -5.651027 2.718534 13.616921

Std. Errors:

(Intercept) RI Al
WinNF 1.030785 1.610635 2.049922
Other 1.165932 1.872040 2.263372

Residual Deviance: 402.6627
AIC: 414.6627

The first 8 has been set to 0.
Note: 402.6627+12 = 414.6627
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So, all but one class gets it's own coefficent vector.

Coefficients:

(Intercept) RI Al
WinNF -3.277900 2.819056 7.861631
Other -5.651027 2.718534 13.616921

> table(y)

y
WinF WinNF Other
70 76 68

The coefficent vector for WinF has been set to 0.
p1 = (0.0,0), for WinF

B2 = (—3.277900, 2.819056, 7.861631) , for WinNF.
p3 = (—5.651027,2.718534, 13.616921), for Other.
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Let
m =0
np = —3.28 + 2.82RI + 7.86A/
13 = —5.65 + 2.72R/ + 13.62A/

1
P(Y = WinF =1jx) = —
14 emn 4 e
e’
P(Y = WinNF =2|x) = ——
1+ em 4 em
e773
P(Y = Other =3|x) = ———
1+em”+em

When both Al and RI are small, the negative intercepts mean Y=WinF=1 is more
likely.

When Al increases, Y=0ther, becomes much more likely because of the large 13.62
coefficient.
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1
P(Y = WinF =1|x) =

1+ e + e
en2
P(Y = WinNF =2|x) = ——
1+ em + e
e773
P(Y = Other =3|x) = —
1+ emn 4 e

Note

P(Y = ilx)/P(Y = jlx) = &7
and the log odds is just n; — 7; with one of the 7 set to 0.
So the large difference in coefficients for Al (13.62-7.86) tells us
the as Al increases the odds for 3=0ther vs 2=WinNF will change
quite a bit in favor of 3=0Other.
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