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1. Classification Metrics

To examine the fit of a model we need a metric.

For numeric outcomes, the industry standard is RMSE (root mean
squared error).

For classification, there are a few different metrics that are used
that we need to be aware of.



We will look at

P cross entropy

» the confusion matrix and miss-classification
» the lift curve

» ROC and AUC

We have already used the first one in text classification with Naive
Bayes.



2. Cross Entropy

For categorical outcomes cross entropy is just another name for the
(- log likelihood loss) we have already use in logistic and
multinomial regression.



For a binary out come if y € {0,1} and p is the probability of y=1
from a model then we often write

L(y,p) = —[y log(p) + (1 — y) log(1 — p)].

For data (train or test) {x;,y;}, with p; the estimated prob Y =1
given x; and a model, then we sum (or average) the loss:

Ly, B) == > ~lyi log(p) + (1~ 1) log(1 — )]
i=1



In sklearn.metrics this is simply called the log loss.

#from sklearn.metrics import log_loss

y_true = [0, 0, 1, 1]

y_pred = [[.9, .11, [.8, .21, [.3, .71, [.01, .99]]
print(log_loss(y_true, y_pred))

temp = -np.log(.9) -np.log(.8) - np.log(.7) - np.log(.99)
print (temp/4.0)



For a multinomial outcome with y € {1,2,..., K}.
Given x;, i =1,2,...,n, let pj = P(Y = j|x;).
Let y;; = 1 if Y; = j and 0 otherwise.

Then the loss is (average of - log lik) is

n K
L= —% > vij log(py)-

i=1 j=1



in sklearn.metrics

3.3.2.12. Log loss

Log loss, also called logistic regression loss or cross-entropy loss, is defined on probability estimates. It is commonly used in (multi-
nomial) logistic regression and neural networks, as well as in some variants of expectation-maximization, and can be used to evalu-
ate the probability outputs (predict_proba) of a classifier instead of its discrete predictions.

For binary classification with a true label y € {0, 1} and a probability estimate p = Pr(y = 1), the log loss per sample is the neg-
ative log-likelihood of the classifier given the true label:

Luoy(y,p) = —log Pr(ylp) = —(ylog(p) + (1 — y)log(1 — p))

This extends to the multiclass case as follows. Let the true labels for a set of samples be encoded as a 1-of-K binary indicator mat-
rix Y, i.e, y; ) = 1if sample i has label k taken from a set of I labels. Let P be a matrix of probability estimates, with
Pik = Pr(yix = 1). Then the log loss of the whole setis

N-1K-1
1
Liog(V.P) = ~1og Pr(Y|P) = — 3 viklogpi
i=0 k=0

To see how this generalizes the binary log loss given above, note that ir
panding the inner sum over y; . € {0, 1} gives the binary log loss.

he binary case, pjo = 1 — p;;andy; 0 = 1 — ;1,50 ex-

The log_loss function computes log loss given a list of ground-truth labels and a probability matrix, as returned by an estimator's
predict_proba method.

>>> from sklearn.metrics import log loss

55> y_true = [0, 0, 1, 1]

>>> y pred = [[.9, .1], [.8, .2], [.3, .71, [.01, .99]]
>>> log_loss(y_true, y_pred)

0.1738...

Thefirst [.9, .1] in y_pred denotes 90% probability that the first sample has label 0. The log loss is non-negative.



3. Confusion and Miss-classification

Let's use the forensic glass data again.

summary(ddf)
type RI

WinF :70 Min. :0
WinNF:76 1st Qu.:0
Other:68 Median :0
Mean :0.
3rd Qu.:0.
Max. 01
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Let's use KNN in R.

near = kknn(type~.,ddf,ddf,k=10,kernel = "rectangular")

Note that | am looking at the in-sample “fit".
| only have 214 observations.

near$fitted[1:50]:

[1] WinF WinNF WinNF WinF WinF WinNF WinF WinF WinF WinF WinNF WinF
[13] WinNF WinF WinF WinF WinF WinF WinF WinNF WinNF WinF WinF WinF
[25] WinF WinF WinF WinF WinF WinF WinF WinF WinF WinF WinF Other
[37] WinF WinF WinF WinF WinF WinF WinF WinF WinF WinNF WinNF WinF
[49] WinF WinF

Levels: WinF WinNF Other

near$prob[1:5,]
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The two-way table relating the observed Y with the predicted Y is

called the confusion matrix.

Data label on columns, “fitted” label on rows.

So, there are 5841141 observations with Y =WinF.
Of those 11 were predicted to be WinNF.

knnfit WinF WinNF Other
WinF 58 13 14
WinNF 11 57 12
Other 1 6 42

We like the diagonals big!

Missclassification rate: (214-(58+57+42))/214 = 0.27
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Here is the confusion matrix from the multinomial logit fit:

logitfit WinF WinNF Other
WinF 45 19 15
WinNF 21 45 13
Other 4 12 40

> (214-(45+45+40)) /214
[1] 0.3925234

Not as good as from KNN.
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How good are the probabilities 77

The first plot is P(Y = WinF | x) vs. y=glass type.
The second plot is P(Y = WinNF | x) vs. y=glass type.
The third plot is P(Y = Other | x) vs. y=glass type.
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pretty good !!
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4. Lift

The lift curve is a popular method for graphically displaying the
effectiveness of an estimate of p = P(Y =1 | x) for a binary Y.

You have a vector of y and a corresponding vector of p.
Each of the y is either a 0 or a 1.

You get to choose observations, and the faster you find all the 1's
the better!!

If you believe p, your first choice will be the one with the biggest p
your second choice will be the one with the second biggest p and
so on.

That is, you would sort so that we go from biggest p to smallest
and then take the observations in that order.

We then plot (% observations taken) vs. (% 1's found).
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Let's use the tabloid data.
10,000 train observations.

purchase
0:9742
1: 258

nTablo,

Min. :0.
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nTablog is log(nTab+1).
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5,000 test observations.

purchase nTab

0:4888  Min. : 0.000

1: 112 1st Qu.: 0.000
Median : 0.000
Mean ¢ 1.775
3rd Qu.: 2.000
Max. :47.000

nTablog

Min. :0.0000

1st Qu.:0.0000

Median :0.0000

Mean :0.6005
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Mean -1
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.303

303

.421

303

.948
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Out of sample lift curves with and without the log in nTab and
with just [IDol.

% of successes

. 0s
% tried

From 20% of the data you get 60% of the good ones!!!
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Note:

Suppose you were just guessing which case to try (as opposed to
picking one with a big p).

That is, you randomly pick an observation and see if you get a 1.
Repeat.

After 30% of the observations on average you would have 30% of
the 1's.

After p% of the observations on average you would have p% of the
1's.

Thus, the "y=x" line in the lift plot is the average performance
you would get by being ignorant and just guessing.
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Note:

According to AIC,

The AIC is now 2032 as opposed to 2064 without the
transformation suggesting that this might be a good idea.

But the lift comparison says there is no difference.
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Here are the out-of-sample p’s from the two models.

nnnnnnnnnnnnnnnnnnn

What would the confusion matrices look like?

What would the missclassification rate tell you??

Why are the lift curves so similar (log and no log) when the p's are
different?
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5. ROC and AUC

ROC and AUC are two popular methods for assessing the quality
of a classifier for a binary y.

ROC stands for the incomprehensible term “receiver operator
characteristics”.

We look at missclassification rates for various values of s using the
rule: classify Y =1if P(Y =1|x)~p>s.

In particular, we consider probability cutoffs s other than .5.

20



The ROC curve summarizes the 2x2 confusion matrix given y =1

if p > s and 0 otherwise as s varies.

Given an s value we have the confusion matrix:

y=0 y=1
yhat=0 TN FN
yhat=1 FP TP

where:

TN: correctly classified 0
FP: incorrectly classified 1
FN: incorrectly classified 0
TP: correctly classified 1
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y=0 y=1
yhat=0 TN FN
yhat=1 FP TP

The Sensitivity is
TP

TP + FN
out of the y = 1 observations, what fraction do we get right

The Specificity is
TN

TN + FP
out of the y = 0 observations, what fraction do we get right
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There are many measures based on these same quantities!!!
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Using the log(nTab+1) model and the test data we classify Y =1
if P(Y =1]x)~ p> .02 we get this confusion matrix.

y

yhat 0 1
0 3616 31
11272 81

ROC looks at:

» Sensitivity: % of y=1 correctly classified:
81/(81+31) = 0.72

» Specificity: % of y=0 correctly classified:
3616/(12724-3616) = 0.74

We want Sensitivity and Specificity big.
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AUC is the area under the ROC curve.

log model AUC= 0.79 lIDol model AUC= 0.65
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As we go from left to right, s goes from 1 to 0.

At s =1, y = 0 for all the observations so, we get all the O’s right
but none of the 1's.

At s =0, y = 1 for all the observations so, we get all the 1's but

none of the 0’s.
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