
Using Neural Nets and Machine Learning to Detect
Credit Card Fraud

STP 494/598 Final Project

Sara Abrams
Department of Psychology

Arizona State University
Tempe, Arizona

sarbrams5@asu.edu

Ashley Megumi Satkowski
School of Arts, Media, and Engineering

Arizona State University
Tempe, Arizona

asatkows@asu.edu

Calvin Dae-sung Norman
Fulton School of Engineering

Arizona State University
Tempe, Arizona

cdnorman@asu.edu

Abstract—This report documents the analysis of a credit card
fraud dataset and the algorithm’s prediction of fraud by using
neural nets and machine learning. This document is a research
paper for a final project for the class STP 494/598: Machine
Learning and Statistical Analysis taught by Dr. Robert McCul-
loch. The students in this group had no previous experience in
R, Machine Learning, or Neural Nets and used the project as a
test of how far they have progressed throughout the semester.

Index Terms—smote, neural network, machine learning

I. INTRODUCTION

Millions of credit card transactions are made everyday
which makes it critical that credit card companies are able to
detect fraudulent charges so that customers are not charged
for the items that they did not purchase. Currently, there are
datasets, competitions, and kernels online in which people
can use Machine Learning and Data Science to perform some
sort of analysis. The purpose of this data being available
publicly is to give others a chance to use various AI and
data mining techniques to come up with an improved solution.

We have decided to take a dataset online from Kaggle
(https://www.kaggle.com/mlg-ulb/creditcardfraud/feed) [1] to
be used in our final project. The dataset contains credit card
transactions made by European cardholders. We are attempting
to predict credit card fraud from factors from 28 features
obtained from a PCA, time elapsed between each transaction,
and the amount charged in the transaction. A full description
of abbreviations, acronyms, and variables is listed below.

II. DATA SET

This dataset is a record of transactions that occurred in the
span of two days with the results of 492 frauds out of 284,807.
Notably, the dataset is highly unbalanced with the positive
class indicating frauds to be 0.172% for all transactions that
occurred. Due to security complications, the data contains
numerical outputs from the result of a PCA transformation.
Original features and other background information about the

data were not provided because it would be a breach in
confidentiality.

A. Dataset Variables

Term Definition
V1..V28
(Vari-
able1...28)

28 variables; Each number is feature that is
obtained from a PCA transformation.

Time Variable in the dataset that indicates the
seconds elapsed between each transaction
and the first transaction in the dataset.

Amount Variable in the dataset that indicates the
amount of money spent during the transac-
tion.

Class Variable in the dataset that indicates the re-
sponse variable that indicates a binary value
to show fraud (1) or a genuine transaction
(0).

B. Abbreviations and Acronyms

AUPRC
(Area
Under the
Precision-
Recall Curve
or AUC)

The AUC is from the dimension of precision
multiplied by recall and is the area that is
under the receiver operation curve. It is a
method to commonly used to classify binary
data by displaying a curve that is able to
better represent the algorithm’s performance.
Method to measure precision, recall, sensitiv-
ity, and specificity. Classifies data into true
positive, false negative, false positive, and
true negative.

Bootstrapping Also known as bagging and it is a method
in machine learning to try to improve the
stability and accuracy of algorithms that are
used in classification and regression.

B. (continued)

Term Definition
PCA
(Principal
Component
Analysis)

A statistical procedure that uses an orthogo-
nal transformation to convert a set of obser-
vations of potentially related variables into a
set of linearly uncorrelated variables called
principal components. [2] The first transfor-
mation (principal component) has the largest
possible variance and each component after
that has the highest possible variance that is
under the constraint of the orthogonal of its
previous components. The vectors that result
create an uncorrelated orthogonal basis set.

SMOTE
(Synthetic
Minority
Over-
sampling
Techniques)

SMOTE is a function that supersamples rare
events in R, also referred to any variable
that happens less than 15% of the time. It
works by oversampling rare events, which
in this case is the detected fraud, and uses
the methods of bootstrapping and KNN to
artificially create additional observations of
that event.

LASSO Method measuring the prediction error of
machine learning models utilizing bootstrap
aggregation to the sub-samples of the data
samples used for training. OOB is the aver-
age prediction error on each training sample
using the trees that did not have it in their
bootstrap sample.[4]

MSE
(Mean
Squared
Error)

The average of the squared error which is
used as the loss function for least squares
regression also known as the unbiased esti-
mate of error variance.

NB
(Naive
Bayes
Classifier)

A probabilistic classifier which uses Bayes’
theorem to assign class probabilities for each
possible outcome.

KNN
(k-nearest
neighbors)

A non-parametric method that is used for
classification and regression in which k is
the number of closest training samples that
is in the feature space. It is a type of instance
based learning where the computations are
deferred until classification and the function
is approximated locally.

NN
(Neural
Net)

A computer system model on the human
brain and nervous system–a variety of deep
learning technologies and methods. Similar
to optic nerves in the human brain, the
first tier receives raw input informaiton and
then each following tier receives the output
from the tier before instead of from the raw
input. Just like the human brain, in a NN
the neurons furthest from the optic nerve
(first tier) takes signals closest to it and then
produces the output of the system from the
last tier.

C. Processing Data

The dataset that was organized into one csv file, with no
missing cases. Given the imbalanced ratio of the class, we
used Area Under The Curve (AUC) as a measure of accuracy
instead of RMSE. Further, the bootstrapping Synthetic Minor-
ity Over-sampling (SMOTE) was used to simulate additional
positive cases, as the dataset was highly imbalanced. For NN
it is optimal to scale and normalize variables around 0. The
PCA variables are already scaled, so the only other variable
to scale was the transaction amount, which we normalized
and scaled around 0. Below shows the box plot of the
(normalized) transaction amount and the classes. Outlier cases
were removed so the graph could fit on this paper.

Fig. 1. Normalized Transaction Amount of Classes

Further, to handle the low ratio of positive to negative
cases, we use SMOTE (which uses KNN and bootstrapping)
to simulate more positive cases. Without the additional cases,
training any model on a sample of the data would result in
poor prediction power.

III. MODELING DATA

We tried methods from STP494: Machine Learning along
with other resources that found online through stack exchange.
We focused on Naive Bayes classification, Logistic Regres-
sion, and Single-Layer Neural Net. Further description of each
method is provided below.

A. Naive Bayes and knn

The initial testing was done with Naive Bayes, with the
desire to compare the accuracy to the Neural Net’s. The Naive
Bayes analysis was run in a loop, with changing Laplace
values, in a desire to see how results would change. However,
in what was somewhat of a surprise, changing the Laplace
values had no effect on the results. The Naive Bayes had an
AUC of 0.97555238. With an accuracy of 0.9777. The question
testing the Naive Bayes raised was why changing the Laplace
value had no effect on the AUC.

After the Naive Bayes testing a KNN model was built, to
compare accuracy. It was run with a k value of 5, and had an
accuracy of 0.9983. This accuracy was the highest accuracy

measured so far. The figure below shows the result of the
Naive Bayes.

Fig. 2. Naive Bayes

B. Logistic Regression

To give a basic starting point for comparison in accuracy
and OOB performance, a logistic regression model was
chosen using the R package glmnet. Then, the textbflasso
feature selection method with cross validation was used to
find an optimal model. The output gave the results of the
adjusted coefficients. The baseline model is given below.

Class V1:V28 + Amount

The figure below shows the Coefficient selection for the
model predictions, using lasso (L1) regularization.

Fig. 3. Coefficients of the Logistic Lasso Regression

C. AOC

One measure of accuracy we are especially interested in
is sensitivity. Sensitivity measures the ratio of true positives
detected compared to the total number of true positives and
false negatives.

sensitivity =

=
of true positives

of true positives +# of false negatives
(1)

Fig. 4. Parameter Selection of Lambda from MSE

Fig. 5. AUC for the Logistic Regression

The figure below shows the area under the curve for the
optimal logistic regression model in glmnet.

D. Neural Net

A neural network (NN) is a machine learning method that
uses a series of interconnected processing nodes to predict
outcomes using different activation functions. The method is
roughtly based off of the same learning methods of the human
brain.

E. Explanation of why NN was used

As mentioned previously, these will be the rules that set the
number of layers and size (neurons/layer) for both the input
and output layers of the neural network. Next, we had to
figure out how many hidden layers to add. If data is linearly
separable (which can be found out when starting to code the
NN) then hidden layers are not needed. Although NN are
not necessary to find a solution, it can be one of the many
methods for prediction and classification. Every NN has three
types of layers: input, output and hidden.

F. Activation Function and Optimization for NN

In a NN, the activation function transforms the net by
using scalar-to-scalar functions and introduces nonlinearity
into the network. Without this, the hidden layers would not
make the NN more powerful than just plain computations
without hidden units. Nonlinearity is what makes the multiple
layer NN work powerfully. A sigmoid function is used during
the computation because the small change in the weights
produces a change in the outputs that displays if the difference
is positive or negative. Because the output class if binary, we
used the logistic function for the activation function that will
be applied to the distribution of target values. [8]

The input layer is decided with respect to the number
of neurons in this layer and correlates to the shape of the
training data. The number of neurons in the input layer is
analogous to the number of feature variables (or columns) in
the data. Occasionally, an additional bias node is added but
for our dataset this was left out. The size of the output layer
is set by the configuration of the chosen model. If the NN
is a regressor there will be a single node in the output layer
and if NN is a classifier then it will either have a single node
or one node per class label in the model. For our data, the
output contains one node that has a binary value.

There are various opinions for hidden layer configuration
in NN but there is a general consensus in the issue of
performance differences (which are very few) from adding
additional hidden layers. One hidden layer is generally found
to be sufficient enough for a large majority of problems. For
size of the hidden layer(s)–how many neurons?[7] There are
some empirically-derived rules-of-thumb, of these, the most
commonly relied on is ”the optimal size of the hidden layer
is usually between the size of the input and size of the output
layers” [6].

We tested 10 different decay values (0.5, 0.1, .05, 0.025,
0.01, 0.005, 0.0025, 0.001, 0.0001, 0.00001) with a single
hidden layer with 2-29 units in the hidden layer. The optimal
decay value and layer size was determined by choosing the
model with the lowest AUC.

The next figure shows the area under the curve for the
optimal NN with 29 units and a decay value of 0.1

The following figure plots the final structure of the neural
net.

By using various techniques to trim the network size, it
can sometimes improve both the computational and resolution
performance. The SMOTE function is used to se the rules
of the dat. The function includes calls to boostrapping and
KNN. The figure below shows a lift chart, which is slightly
AUC chart. The lift chart indicates the prediction gain from
the models above baseline, or a simple regression model. In

Fig. 6. AUC for NN

Fig. 7. Visualization of the Neural Net

this model, the neural net is represented by the red line and
the logistic regression is represented by the black line.

Fig. 8. Lift of the NN (red) compared to Logistic Regression (black)

As you can see, their prediction improvements are extremely
similar. This might be explained by the sigmoid functions that
both models use to classify binary outcomes.

IV. BOTTLENECKS AND CHALLENGES

While working on this project there were some issues we
encountered. Although the dataset was formatted cleanly, there
was rare occurrence data and extreme outliers that needed to be
dealt with. Thus, we had to do research and found that SMOTE
was the best method to create a new training set. Further, other
researchers suggesting avoiding using a confusion matrix alone

to measure model accuracy. Instead, we opted to use the AUC
variable to find the optimal solution.

V. CONCLUSION AND FUTURE WORK

We were curious to see how the methods would compare
and surprised to see that the logistic regression had better
performance than the neural net. This may be due to the fact
that both the logistic regression model and the neural net use
sigmoid functions as a method

In there future, additional research can be conducted by
potentially using additional layer in a different NN model
instead of the —–that we used should be considered. To com-
pare the results and accuracy for more analysis, classification
techniques such as random forests and classification trees can
also be used in future work.

ACKNOWLEDGMENT

The dataset used was taken from Kaggle and was collected
during a research collaboration of Worldline and the Machine
Learning Group of Universite Libre de Bruxelles on big data
mining and fraud detection. Special thanks to professor Dr.
Robert McCulloch and the Graduate Math Tutoring Center in
Wexler Hall at Arizona State University.

REFERENCES

[1] Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca
Bontempi. Calibrating Probability with Undersampling for Unbalanced
Classification. In Symposium on Computational Intelligence and Data
Mining (CIDM), IEEE, 2015.

[2] Abdi. H., & Williams, L.J. (2010). ”Principal component analysis”. Wi-
ley Interdisciplinary Reviews: Computational Statistics. 2 (4): 433?459.
doi:10.1002/wics.101

[3] Bowyer W. Kevin, Chawla V. Nitesh, Hall O. Lawrence, Kegelmeyer P.
W. ”SMOTE: Synthetic Minority Over-sampling Technique”. pp. 321-
357. 2012. Journal of Artificial Intelligence Research.

[4] Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013).
An Introduction to Statistical Learning. Springer. pp. 316?321.

[5] Davis, J., Goadrich, M. ”The Relationship Between Precision-Recall and
ROC Curves”. Department of Computer Sciences and Department of
Biostatistics and Medical Informatics, University of Wisconsin-Madison,
1210 West Dayton Street, Madison, WI, 53706 USA

[6] Jeff Heaton, author of Introduction to Neural Networks in Java offers a
few more

[7] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski,
?Selection of proper neural network sizes and architectures: a compar-
ative study,? IEEE Transactions on Industrial Informatics, vol. 8, no. 2,
pp. 228?240, 2012

[8] Jordan, M.I. (1995), ”Why the logistic function? A tutorial discussion on
probabilities and neural networks”, MIT Computational Cognitive Sci-
ence Report 9503, http://www.cs.berkeley.edu/ jordan/papers/uai.ps.Z.

