Back Propagation

Mladen Kolar and Rob McCulloch

1. Back Propagation

1. Back Propagation

Backpropation is the basic algorithm for computing the gradient
vector for a neural net model.

For a given (x,y) we need the partial derivatives of the ultimate
loss with respect to all the weights and biases.

To evaluate the model we start at x and go forward through the
layers, ending up at the ouput layer.

To evaluate the gradient we go backward, starting at the output
layer and iterating back to the coefficients connecting x to the first
hidden layer.

We will need a general notation for the neural net model.

Let's start by letting £ index the layers.

¢ goes from 1 to L where £ =1 is the input layer (x) and L is the
final output layer.

To keep things simple, we will have just one outcome with
associated activation function gt. For a single numeric outcome,
gl would typically be the identity function /(x) = x.

We will use the same activation function g at all the interior units
(neurons).

Let py be the number of neurons at layer £.
Note that p; = p where p is the dimension of x since that is the
input layer.

Z,EZ) . the Z value at the k™ unit of layer (£), k =1,2,..., ps.

We have Zlf:fli/er) Similary, we have ag) with,

(4) (Z(f))
W,EE) = weight from a() (at layer ¢) to Z(E’Ll) (at layer (¢ 4 1)).
() (6)

Think of w as Wii" = Wil -

bff) = intercept for Z,E”l) (at layer (£ 4 1)).

20 = b Y w A Y k=12, pr

P(e—1)

J
j=t

Matrix/Vector version:

z0 =20, Z"..... z3)y
a¥ = g(z)

0 (¢ £
b(f) = (bg), b§)7 RS bl(i’(ZH)),

w0 = [W,Ef)} » Pe+1) X Pe

Then,
70 — p=1) 4 pye=1) 4(e-1)

>y Pe-

Begin:

aV) = x, € RP.

Iterate through the layers:

20 = pl1) f wED41) 50 — g(70y,

Final output layer and Loss:

f(x, W, b) = gt(Zh), Loss: L(y, f(x, W, b)).

Here is the general model:

Simplest interesting case, just the model.

Note:

Backpropagation will work by computing:

6(4)_ oL
i 782(5)

i

The differential effect of a change in Z,-(g) on the ultimate loss L.

Simplest interesting case, everything.
One x, one hidden layer with 2 neurons, one output.

Simplest interesting case, just ai—’l(‘i).

Same thing, just using J:

79 Z b 1 @ 5@ 4 w2 0.

oL _ oL 9z’ _ s o
ow? 0z® gu® T

Similarly,

OL _ 500,

L (3)
a =6,".
6W1(§) 2

p?

11

Simplest interesting case, just 6‘3’('1).

11

20 _ b 4 w0,

Similarly,

3
s 0L L 040 iy o))
078 0z® 9z
2
oL oL 0zZf? _ 52 40
owl) 92 owlD

And,

oL 5@ oL _ 5(2)

R Y O

13

Here are the partial derivatives associated with the parameters at
layer L — 1.

This will also initialize the back-progagation algorithm for
computing the partials for parameters associated with the other

layers.

Latex for previous hand written slide.

PL—1
L L-1 L-1) (L-1
Zf):bg)+ZW1(j)aj(.),

j=1

f(x, b,w) = gH(ZM), Ly,f)=(y - f)?

oL aL of ,
(5(’-):7:77:_2 —f L/Z() .
U= 20 af 50 201 (6"
oL oL oz _ 50 .
awl(jL—l) Zl(L) Wl(jL_l) J

16

Multivariate version of chain rule.

Here is the iteration for computing the key 6}6) quantities.

Z,E”l) i +Z W(e) (_e

_ Z 0 g(2)
so_ oL _ ”f oL 9z
i l - 4 4
0z — oz 9z
Pe+1 i1 ' ’
=] [w @)
k=1
Oy [+ [0
+
= g(Z)kil [5k } {Wki}

19

/
50 — ¢(20) [[Wm} 5(e+1>}
where
a® b= (ajbj)

is elementwise multiplication, and

g'(Z() means apply g’ : R — R to each element of Z(0),

Note:
ZO e Ree. g'(z0) e RPe. 5O € RPe.
§(+1) ¢ Rlpet1),

W is piry x pe.

20

Here are the partial derivatives in terms of the 5}@.

oL

owy)

pe
Z,EZH) = bi + Z w,Ef) a;

H

i=1

oL ozt

{41 l

oz ow
5D 50

k
oL ECRY
onl *

o)

22

oL
oww

oL

ob®)

oL |
ow |

_|ot
ob)

] o]

5(@4—1)

23

