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1. Introduction

When we did Naive Bayes we had to estimate

p(Xi=xi | Y =y) (orp(xi|y)).

How did we do it?

We simply used the observed frequency.

To estimate p(X; =x; | Y = y):
in the training data, out of the times Y =y,
what fraction of observations have X; = x;.



If X; ~ Bern(p), we estimate p with the observed fraction of times
Xj = 1.

We call p the parameter of the statistical model X ~ Bern(p).

We consider a variety of statistical models and need to estimated
the associated parameters.

For example, if we assume Y; ~ N(u,0?) then we have to estimate
(1, 02).

While the observed conditional frequency seems very reasonable for
esitmating probabilities, we want a general approach to estimating
the parameters of a statisical model.



Maximimum likelihood is a very general appproach which we will

review.

Along the way, we will also review some very basic ideas from
optimization.



2. Finding a Minimum, one variable

Let f be a function of a single variable, so that 7(x) is an number
forx e C CR.

Xo is a local minimum if f(x) > f(xp) for all x close to xo.

Xo is a global minimum if f(x) > f(xp) for all x € C.




Recall:

The derivative gives you a linear approximation to the function:

f(x) — f(a) ~ (x — a)f'(a).

For x close to a, f(x) ~ fL(x).



Neccessary Condition:
If xo is a local min (or max) then f’(xp) = 0.
Sufficient Condition:

If f'(x0) =0 and f”(x0) >, then xp is a local minimum.

At a local minimum, the derivative is increasing.



Global Sufficient Condition

f is convex if

flaxi + (1 —a)x) < af(x1) + (1 — a)f(x2),a € [0,1].

If f is convex and f'(xp) = 0, then xg is a global minimum.



We us optimization a /ot in Machine Learning.

In particular, learning on the training data is often done by some
kind of optimization.

For example, in the model y; &~ 3'x; we learn (estimate) 3 by
solving

m|n|m|ze E ﬁx,

We will spend a chunk of time on versions of this problem.



3. Maximum Likelihood, the Bernoulli

Suppose we have a statistical model
Y ~f(y|0)

where 6 is the parameter (possibly a vector).

Given data Y = y how can we estimate 67

Maximum Likelihood:

Choose the 6 that makes what you have seen most likely:

0 = argmax f(y | 0)
0



In the iid case, we have Y = (Y1, Y2,..., Y,) with
Yi~f(y|0) iid,

so
fly 10) H f(vi | 9),

and the MLE is

n
0 = argmax fly; | 0).
gn ];[1 (vi | 0)
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Note:

f(y | 0) viewed as a function of 6 for a fixed y is called the
likelihood function.

In practice we often maximize the log of the likelihood or minimize
the negative of the log likelihood.
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FOC: “first order condition”, f' = 0.
So, the observed sample frequency is the MLE!




4. Projecting onto a vector

Let x and y € R".
So, for example, x = (x1,x2,...,%n) .

We will find the solution to the following problem very useful:

. 2
min — pPX
min [ly — x|

where ||x|]? = > x2.
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Recall:

x,y € R",

The inner product is

<xy>=xy=yx= Zx,-y,-.

The L2 or Euclidean norm (squared) is

|Ix|]> =< x,x >= X/X:ZX,?

x and y are orthogonal if

<x,y>=0
14



Note:

If x and y are orthogonal:

[Ix + yI?

<X+y,x+y>
= <X, Xx>2<x,y>+<y,y>
= |IxIP + llyl1?
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y is the orthogonal projection of y onto x.
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To solve our problem we have

So that obviously the min is obtained at g* = B



5. Finding a Minimum, Several Variables

!/
Now suppose x = (x1,x2, ..., Xp)

and f(x) = f(x1,x2,...,%) € R.

How do we solve:
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The Gradient:

_ [of(x) of(x) Of (x)

Vi(x) = Ix1 7 Ox T Oxp

where
Of (x)
Ox;

is what you get by holding all the x;, j # i fixed, and then
differentiating with respect to x;.

19



The gradient is a multivariate derivative in that (skipping some
technical details):

f(x) = f(a) + Vf(a)(x — a)

Note that Vf(x) is a row vector so that the product above makes
sense with x a column vector.

An alternative notation is:

f(x) =~ f(a)+ < Vf(a),(x — a) >
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Stolen off the web:

Gradient as Best Linear Approximation

Another way to think about it: at each point x0, gradient is the
vector V f (x¢) that leads to the best possible approximation

09 ~ 1) +(@ ) x50
V

Starting at xo, this term gets:

«bigger if we move in the
direction of the gradient,

«smaller if we move in the
opposite direction, and

«doesn’t change if we move
orthogonal to gradient.

CMU15-462/62
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We can visualize the gradient using the contours of f.
A contour is the set {x : f(x) = c}.

» If you want to increase f as fast as possible, go in the direction of the gradient
Vf.
» If you want to decrease f as fast as possible, go in the direction of the negative
gradient —Vf.
> If you want to move without changing f go in a direction orthogonal to the
gradient.
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Neccessary Condition for a local min/max:

If x* is a local min (or max) then we must have

Vi(x*)=0
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Again f is convex if,

flaxi + (1 — a)x) < af(x1) + (1 — a@)f(x),a € [0,1].

exactly as before except that now x denotes a vector € RP.

As before, if f is convex, then a local minimum is a global
minimum.
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6. Maximum Likelihood, the normal

Suppose

Yi ~ N(p,0%), iid

what is the MLE of § = (u,0?) ?
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We want to simplify > (y; — ).
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Here is another way.
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7. The Multinoulli MLE

The fundamental Bernoulli random variable considers the case
where something is about to happen or not and we code one
possibility up as a 1 and the other as a 0.

The Multinoulli distribution consider the more general case where
there is a a set of k possible outcomes.

For example, if we survey a customer and ask them to rate our
product on a 1-5 scale then there are 5 possible outcomes.
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Let {1,2,..., k} denote the possible outcomes for Y.

Let

with

Then

Given Y; ~ Multinoulli(p) we want to compute the MLE of p.

p=(p1.p2,---,Pk)
P(Y=j|p)=np;

Y ~ Multinoulli(p)
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How do we maximize this likelihood?

With just two possible outcomes we had one variable,
p=P(Y =1).

Now we have p;,j =1,2,..., k with the constraint ) p; = 1.

We also have 0 < p; < 1, but we won't have to worry about this.

We could let py =1 — Zf;ll and then optimize over
(p17 p2;---, pk—l)-

But, it is easier to use lagrange multipliers.
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8. Lagrange Multiplier

Let x € RP.

We want to solve:
min f(x), subject to g(x) =0
X

Let
L(x,\) = f(x) + Ag(x)

and then minimize £ unconstrained over (x, \).

Differentiating £ with respect to A gives:

g(x)=0

at the min/max.
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Differentiating £ with respect to x give:
Vi(x)+AVg(x)=0

at a local min (or max).
Because of the constraint g(x) = 0 you can only move orthogonal
to Vg.

But, Vf x Vg, tells you that “small” moves orthogonal to Vg
will not change f so it is a local minimum or maximum. 35



9. The Multinoulli MLE again

To obtain the Multinoulli MLE we will have

L(p) =] P"

and we maximize this subject to

ij:]..

We will max the log likelihood:

L(p,\) = mjlog(p;) + A\ _pj—1)
j ]
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The MLE is the observed sample frequency.




10. KKT

We will have occasion to consider constraint sets of the form

rather than just

The Karush-Kuhn-Tucker conditions cover both inequality and
equality constraints.

We'll see how things change with one inequality constraint and
then state the general result.
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KKT:
To minimize f(x) subject to g(x) <0, form

L(x, o) = f(x) + ag(x)

and then solve

minymaxg, >0 L(x, a).

With o > 0 we must have g(x) < 0, since otherwise we could get
a max of infinity.
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Also note that at the solution:

a* g(x*)=0.

This captures the fact that there are two possibilities:

» If the constraint is binding then g(x*) = 0 and we can have
o > 0.

» If the constraint is not binding so that g(x*) < 0 then the
max over non-negative « is clearly obtained at a* = 0.
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If g(x) <0 (o= 0) at the optimal value then the constraint is not

binding and we can just use our usual solve Vf = 0 approach.

If g(x) =0 (a > 0) then the KKT result says we can solve the
unconstrained problem of minimizing:

min f(x) + a g(x).

41



As before, the term
min f(x) + a g(x)

is called the “lagrangian” and « is the lagrange multiplier.
The FOC (first order condition) associate with the lagrangian is:

Vf(x)+aVg(x)=0.
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Here is the case where the constraint is not binding.

The global min is in the interior of the set g(x) < 0.
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Here is the key picture for the case where the constraint is binding.

Remember, Vf is the direction in which f goes up the fastest!!
Vf points perpendicularly to the contour of f.

It is intuitive that Vf +a Vg = 0 with a > 0.
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The general form of the KKT theorem.

Just notice that with equality constraints you don't know the sign
of the constraint coefficient.




Example:

What happens when we do

min a'x
x:||x||<c

What happens when we do

maxXx a’x
xillxl<e
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