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1. Trees

Tree based methods are a major player in
statistics/machine-learning.

Good:

▶ flexible fitters, capture non-linearity and interactions.
without having to choose a set of transformations !!!!

▶ do not have to think about scale of x variables.

▶ handles categorical and numeric y and x very nicely.

▶ fast.

▶ interpretable (when small).

Bad:

Not the best in out-of-sample predictive performance
(but not bad!!).
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But,

If we bag or boost trees, we can get the best off-the-shelf
prediction available.

Bagging and Boosting are ensemble methods that combine the fit
from many (hundreds, thousands) of tree models to get an overall
predictor.

“.. it is rather amazing that an ensemble of trees leads to
the state of the art in black-box predictors !

Bradley Efron and Trevor Hastie, Computer Age Statistical
Inference, chapter 17, 2016.
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2. Regression Trees

Let’s look at a simple 1-dimensional example so that we can see
what is going on.

We’ll use the Boston housing data and relate x=lstat to y=medval.
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At left is the tree fit to the data.

At each interior node there is a decision rule of the form {x < c}.
If x < c you go left, otherwise you go right.

Each observation is sent down the tree until it hits a bottom node
or leaf of the tree.

|
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The set of bottom nodes gives us a partition of the predictor (x)
space into disjoint regions. At right, the vertical lines display the
partition. With just one x , this is just a set of intervals.
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Within each region (interval) we compute the average of the y
values for the subset of training data in the region. This gives us
the step function which is our f̂ . The ȳ values are also printed at
the bottom nodes (left plot).
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To predict, we just use our step function estimate of f (x).

Equivalently, we drop x down the tree until it lands in a leaf and
then predict the average of the y values for the training
observations in the same leaf.
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A Tree with Two Explanatory Variables

Here is a tree with x = (x1, x2) = (lstat,dis) and y=medv.

Now the decision rules can use either of the two x ’s.

|
lstat < 9.725

lstat < 4.65

dis < 3.20745 dis < 2.4501

lstat < 16.085

dis < 2.0037
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At right is the partition of the x space corresponding to the set of
bottom nodes (leaves).

The average y for training observations assigned to a region is
printed in each region and at the bottom nodes.
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This is the regression function
given by the tree.

It is a step function which can
seem dumb, but it delivers non-
linearity and interactions in a
simple way and works with a
lot of variables.

Notice the interaction.

The effect of dis depends on

lstat!!

dis

lstat

m
edv
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The California Housing Data

Here is a tree with 50 bottom nodes fit to the California Housing
data using only longitude and latitude.

|
latitude < 38.475

longitude < −121.655

latitude < 37.925

longitude < −122.305

latitude < 37.605

longitude < −122.425
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longitude < −122.255
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latitude < 34.525
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longitude < −118.485

longitude < −117.505

latitude < 33.735

latitude < 34.105
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Don’t extrapolate into the ocean!
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Here is a view of the fit using the map of the state.
(units are dollars, the logMedVal was exponentiated for the labels).
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3. Classification Trees

Let’s do a tree for a classification problem.

We’ll use the hockey penalty data.

The response is 1 if the current penalty is not on the same team as
the previous penalty and 0 otherwise.

x is a bunch of stuff about the game situation
(the score ...).

The x values refer to the team that had the previous penalty.
For example, goaldiff=1 means the team that had the previous
penalty is ahead by one goal.

Our response is binary and some of our predictors are categorical
as well.
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n ≈ 60, 000.
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Here is the tree.

goaldiff < .5 means the last penalized team is not winning.
Do you want to give them a another penalty ???

|
goaldiff < 0.5

inrow2: 0

numpen < 2.5

time < 22.775 goaldiff < −0.5

laghome: 0

timespan < 6.79167

numrefs: 1

timespan < 3.39167

inrow2: 0

numpen < 2.5

inrow3: 0

time < 37.6917

laghome: 0
0:0.34
1:0.66

0.44
0.56

0.40
0.60

0.49
0.51

0.43
0.57

0.28
0.72

0.34
0.66

0.37
0.63

0.34
0.66

0.46
0.54

0.35
0.65

0.49
0.51

0.59
0.41

0.52
0.48

0.42
0.58

▶ Each bottom node gives the fraction of training data in the two outcome
categories. Think of it as p̂ for the kind of x associated with that bottom node.

▶ The form of the decision rule can’t be x < c for categorical variables.
We pick a subset of the levels to go left. inrow2:0 means all the observations
with inrow2 in the category labeled 0 go left.
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There is a lot of fit!!!

Suppose “you” got the last penalty.
if:

▶ if you are not winning

▶ you had the last two penalties

▶ it has not been long since the last call

▶ and there is only 1 referee

then:
there is a 72% chance the next call will be on the other team.

|
goaldiff < 0.5

inrow2: 0

numpen < 2.5

time < 22.775 goaldiff < −0.5

laghome: 0

timespan < 6.79167

numrefs: 1

timespan < 3.39167

inrow2: 0

numpen < 2.5

inrow3: 0

time < 37.6917

laghome: 0
0:0.34
1:0.66

0.44
0.56

0.40
0.60

0.49
0.51

0.43
0.57

0.28
0.72

0.34
0.66

0.37
0.63

0.34
0.66

0.46
0.54

0.35
0.65

0.49
0.51

0.59
0.41

0.52
0.48

0.42
0.58

Whilst there is another game situation where the chance the next
call is on the other team is only 41%.
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4. Trees: A Summary

Trees:

▶ Trees use recursive binary splits to partition the predictor space.

▶ Each binary split consists of a decision rule which sends x left or right.

▶ For numeric xi , the decision rule is of the form if xi < c.

▶ For categorical xi , the rule lists the set of categories sent left.

▶ The set of bottom nodes (or leaves) give a partition of the x space.

▶ To predict, we drop an out-of-sample x down the tree until it lands in a bottom
node.

▶ For numeric y , we predict the average y value for the training data that ended
up in the bottom node.

▶ For categorical y we use the category proportions for the training data that
ended up in the bottom node.
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Good:

▶ Handles categorical/numeric x and y nicely.

▶ Don’t have to think about the scale of x ’s !!!

▶ Computationally fast (“scales”).

▶ Small trees are interpretable.

▶ Variable selection.

Bad:

▶ Step function is crude, does not give the best predictive performance.

▶ Hard to assess uncertainly.

▶ Big trees are not interpretable.
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5. Tree Models and the Bias Variance Trade Off

How do we fit trees to data??

The key idea is that a complex tree is simply a big tree.

We usually measure the complexity of the tree by the number of
bottom nodes.
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To fit a tree, we choose a tree to minimize (on the training data):

C (T , y) = L(T , y) + α |T |

where,

▶ L(T , y) is our loss in fitting data y with tree T .
We want good fit on the training data ⇒ want L small.

▶ |T | is the number of bottom nodes in tree T .
But, we don’t want a complex model that fits too well
⇒ we want |T | small.

For numeric y our loss is usually sum of squared errors, for
categorical y we can use the deviance or some other measure of
classification fit.
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C (T , y) = L(T , y) + α |T |

α big:

The penalty for having a big tree is large.
When we do our minimization, we will get a smaller tree with a
bigger L on the training data.

α small:

We do not mind having a big tree.
We will get a smaller L (better fit) on the training data.

α is analogous to k in k-NN !!!!!
α is analogous to λ in the lasso !!!!!

α is called the complexity-cost penalty parameter.
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How do we do the minimization ??!!

Now we have a problem.

While trees are simple in some sense, once we view them as
variables in an optimization they are large and complex.

A key to tree modeling is the success of the following heuristic
algorithm for fitting trees to training data.
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(I. Grow Big)

Use a greedy, recursive forward search to build a big tree.

(i)

Start with the tree that is a single node.

(ii)

At each bottom node, search over all possible decision rules to find
the one that gives the biggest decrease in L (increase in fit).

(iii)

Grow a big tree, stopping (for example) when each bottom node
has 5 observations in it.

20



(II. Prune Back)

(i)

Recursively, prune back the big tree from step (I).

(ii)

Give a current pruned tree, examine every pair of bottom nodes
(having the same parent node) and consider eliminating the pair.

Prune the pair the gives the biggest decrease in our criterion C .

This is give us a sequence of subtrees of our initial big tree.

(iii)

For a given α, choose the subtree of the big tree that has the
smallest C .

21



So,

Give training data and α we get a tree.

How do we choose α ??

As usual, we can leave out a validation data set and choose the α
the performs best on the validation data, or use k-fold cross
validation.
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Boston Data,
lstat and medv:

At right are three different tree
fits we get from three different
α values (using all the data).

The smaller α is, the lower the
penalty for complexity is, the
bigger tree you get.

The top tree is a sub-tree of
the middle tree, and the middle
tree is a sub-tree of the bottom
tree.

The middle α is the one sug-

gested by CV.
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This is the CV plot giving by the R package rpart for y=medv
x=lstat.

Tree sizes at top of plot, and (a transformation of) α
(the “cost-complexity” parameter) on the bottom.

The error is relative to the error obtained with a single node
(fit is y = ȳ , α =∞).
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Here is the best CV tree as plotted by rpart.
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6. Bagging and Random Forests

A key idea in modern statistics is the bootstrap:

Treat the sample as if it were the population and then take iid
draws.

That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap sample.

We can use the bootstrap to make trees much better predictors !!!!

To Bootstrap Aggregate (Bag) we:

▶ Take B bootstrap samples from the training data, each of the
same size as the training data.

▶ Fit a large tree to each bootstrap sample (we know how to do
this fast!). This will give us B trees.

▶ Combine the results from each of the B trees to get an overall
prediction.
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What is a bootstrap a sample?
> set.seed(34) # Auston Matthews

>

> n = 20

> x = rnorm(n)

> print(x)

[1] -0.138889971 1.199812897 -0.747722402 -0.575248177 -0.263581513

[6] -0.455492149 0.670620044 -0.849014621 1.066804504 -0.007460534

[11] -0.402880091 0.719107939 -0.180058654 1.046190759 0.401254928

[16] 1.356390044 0.019226639 -0.469417841 -1.842661894 -0.279740938

>

> xs = sample(x,size=n,replace=TRUE)

> print(xs)

[1] 1.1998129 1.1998129 -0.2797409 1.0461908 -0.7477224 1.0461908

[7] 1.1998129 -0.2797409 1.0461908 -1.8426619 1.3563900 0.6706200

[13] -0.5752482 -0.4028801 0.6706200 -0.8490146 1.0668045 -0.4554921

[19] -0.4694178 -0.7477224

> print(length(unique(xs)))

[1] 13

We act like our sample x is the population, and then we can take
as many bootstrap samples from x as we like by sampling with
replacement.
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For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of the B
trees.

For categorical y , it is not quite so obvious how you want to
combine the results from the different trees.
Often people let the trees vote: given x get a prediction from each
tree and the category that gets the most votes (out of B ballots) is
the prediction.

Alternatively, you could average the p̂ from each tree. Most
software seems to follow the vote plan.
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Why on earth would this work??!!

Remember our basic intuition about averaging, for

yi = µ+ ϵi ,

we think of µ as the signal and ϵi as the noise part of each
observation.

When we average the yi to get ȳ , the signal, µ, is in each draw, so
it does not wash away, but the ϵi wash out.

For us, the signal is the part of y we can guess from knowing x!!
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Bagging works the same way.

We randomize our data and then build a lot of big
(and hence noisy!) trees.

The relationships which are real get captured in a lot of the trees
and hence do not wash out when we average.

Stuff that happens “by chance” is idiosyncratic to one (or a few)
trees and washes out in the average.

Brilliant. Leo Brieman.
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Bagging and the Bias-Variance Tradeoff

A nice way to think about bagging is in terms of the Bias-Variance
tradeoff.

A big tree is a complex model which gives us high variance and low
bias.

What does low bias mean? We can find a good f̂ on average,
where average means average over data sets you might get from
the population or process generating the data.

So, if we could average the results from many data sets, we could
reduce the variance, and get the good average f̂ !!

But we only get one data set !!!!

We get many data sets by bootstrap sampling from our
observations and then average the results !!!
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Note:

You need B big enough to get the averaging to work, but it does
not seem to hurt if you make B bigger than that.

The cost of having very large B is in computational time.

We can build trees fast, but if you start building thousands of
really big trees on large data sets, it can end taking a while.
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Random Forests:

Random Forests starts from Bagging and adds another kind of
randomization.

Rather than searching over all the xi in x when we do our greedy
build of the big trees, we randomly sample a subset of m variables
to search over each time we make a split.

This makes the big trees “move around more” so that we explore a
rich set of trees, but the important variables will still shine
through!!.
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Have to choose:

▶ B: number of Bootstrap samples (hundreds, thousands).

▶ m: number of variables to sample.

A common choice is m =
√
p,

where p is the dimension of x .

Note:

Bagging is Random Forests with m = p.

Note:

There is no explicit regularization parameter as in the lasso and
single tree prediction.
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OOB Error Estimation:

OOB is “Out of Bag”.

For a bootstrap sample, the observations chosen are “in the bag”
and the rest are out.

There is a very nice way to estimate the out-of-sample error rate
when bagging.

One can show that, on average, each bagged tree makes use of
about 2/3 of the observations.

By carefully keeping track of which bagged trees use which
observations you can get out-of-sample predictions.
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Bagging for Boston: y=medv, x=lstat.

Here is the error estimation as a function of the number of trees
based on OOB.

Suggests you just
need a couple of
hundred trees.
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Bagging for Boston: y=medv, x=lstat.

With 10 trees our fit is too jumbly.

With 1,000 and 5,000 trees the fit is not bad and very similar.

Note that although our method is based on trees, we no longer
have a simple step function!!
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7. Boosting Trees

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees.

The idea however, is totally different!!

In Boosting we sequentially add in functions corresponding to
simple trees to our overall fit, where each tree added in improves
things “a bit”.
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This one is actually made clearer by the mathematical notation.

For Numeric y :

(i) Set f̂ (x) = 0. ri = yi for all i in the training set.

(ii) for b = 1, 2, . . .B, repeat:
▶ Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the

training data (X , r).
▶ Update f̂ by adding in a shrunken version of the new tree:

f̂ (x)← f̂ (x) + λ f̂ b(x).
▶ Update the residuls: ri ← ri − λ f̂ b(x).

(iii) Output the boosted model:

f̂ (x) =
B∑
i=1

λ f̂ b(x).
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Note:

λ is the “crushing” or “shrinkage” parameter.

It makes each new tree a weak learner in that is only does a little
more fitting.

Have to choose:

▶ B, number of iterations (the number of trees in the sum)
(hundreds, thousands).

▶ d , the size of each new tree.

▶ λ, the crush factor.
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Note:

Boosting for categorical y works in an analogous manner but it is
more messy how you define “the part left over”, you can’t just use
residuals.

Also you can’t just add up the fit.

But, it is the same idea:

Sequentially add in small fits of fit (“weaker learners”) focusing on
the errors of the current fit (e.g observations where the residuals
are large).

Efron and Hastie: “.. each tree is trying to amend errors made by
the ensemble of previously grown trees.”
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Boosting for Boston: y=medv, x=lstat:

Here are some boosting fits where we vary the number of trees,
but fix the depth at 2 (suitable with 1 x) and shrinkage = λ at .2.
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Again, this ensemble method gets away from the crude step
function given by a single tree.
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