
Variable Selection with BART

Carlos Carvalho, Ed George, Richard Hahn and Rob McCulloch

5/31/2023

Variable Section Using BART
We present two approaches.

In our first approach we use the R package BART which is on CRAN.
This approach examines the BART draws to see which variables are being used in the decision trees.

In the second approach we use the R package nonlinvarsel which is available at http://www.rob-
mcculloch.org.
This approach searches for variable subsets which can be used to approximate predictions based on the
information in the complete set of variables.
See “A Utility Based Approach to Variable Selection” below.

Variable Selection Using the BART R Package
In this note we will illustrate the use of the R package BART to do variable selection.

The basic advantages of this approach are the effective stochastic search of the BART algorithm and the
simple variable usage counts.
There is no need to elaborate the model.

The only tricky aspect is that to get a good idea of the variable usage, it is recommended that fewer trees be
used in the sum of trees model.

The Data

To keep things simple we will use the time honored Boston Housing data.

Each observation corresponds to a region in the Boston area.
The response is the median house price in the region.
The explanatory features measure various things about the region.
library(MASS)
attach(Boston)
names(Boston)
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age"
[8] "dis" "rad" "tax" "ptratio" "black" "lstat" "medv"

y = Boston$medv
x = Boston[,1:13]
p = ncol(x)

Running BART

First we load the BART R package and set the seed.

1

http://www.rob-mcculloch.org
http://www.rob-mcculloch.org

We let burn = 10000 burn-in draws and nd = 10000 kept draws.
For the kept draws of the function, fd, d = 1, 2, . . . , nd, BART will evaluate fd(x) for train and test (if
supplied) values of x.

We set the seed.
library(BART)
Loading required package: nlme
Loading required package: nnet
Loading required package: survival

set.seed(99) # Wayne Gretzky
burn=10000; nd=10000

Now we run BART using the default prior and model settings.
run default BART
bf = wbart(x,y,nskip=burn,ndpost=nd,printevery=5000) #print progress every 5000th MCMC iteration

The sigma component of bf has all 104 + 104 draws of sigma, that is, we include burn-in.
This way we can check that we chose a reasonable value for the number of burn-in draws.
linear model fit
lmf = lm(medv~.,Boston)
plot(bf$sigma,ylim=c(1.5,5),xlab="MCMC iteration",ylab="sigma draw",cex=.5)
abline(h=summary(lmf)$sigma,col="red",lty=2) #least squares estimates
abline(v = burn,col="green")
title(main="sigma draws, green line at burn in, red line at least squares estimate",cex.main=.8)

0 5000 10000 15000 20000

1.
5

2.
5

3.
5

4.
5

MCMC iteration

si
gm

a
dr

aw

sigma draws, green line at burn in, red line at least squares estimate

Our burn-in choice looks reasonable in that the sigma draws have “settled down” by the 1,000 the draw.
The draws exhibit substantial dependence, but seem like a reasonable exploration of plausible sigma values
given the data.
The post burn-in sigma values suggest BART has found substantially more fit on the training data than the

2

simple linear model.

For example, if we thin to every 20th post burn-in draw, we get a non-neglible but reasonable ACF.
thin = 20
ii = burn + thin*(1:(nd/thin))
acf(bf$sigma[ii],main="ACF of thinned post burn-in sigma draws")

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of thinned post burn−in sigma draws

The default BART run uses 200 trees in the sum-of-trees model.

To get a good sense of the variable selection, we will see that it helps to use fewer trees.
Let’s run BART, but just use 20 trees in the sum.
run BART with 20 trees in the sum
set.seed(99)
bf20 = wbart(x,y,nskip=burn,ndpost=nd,ntree=20,printevery=5000)

Let’s compare the in-sample fits from the two BART runs.
fitmat = cbind(y,bf$yhat.train.mean,bf20$yhat.train.mean)
colnames(fitmat) = c("y","yhatBART","yhatBART20")
pairs(fitmat)

3

y

10
30

50

10 20 30 40 50

10 20 30 40 50

yhatBART

10
30

50

10 20 30 40 50

10
30

50

yhatBART20

print(cor(fitmat))
y yhatBART yhatBART20
y 1.0000000 0.9884595 0.9800918
yhatBART 0.9884595 1.0000000 0.9924667
yhatBART20 0.9800918 0.9924667 1.0000000

We see that both BART and BART20 fit the data (in-sample) very well.

In general, the BART20 may not may not fit quite as well, but we will see in the next section that it sharpens
our variable selection to use fewer trees.

Variable Selection

The component varcount of our BART fit the provides information about which variables are used in the
trees.
dim(bf20$varcount)
[1] 10000 13

Each row of varcount corresponds to one of our 104 kept post burn-in MCMC draws of the sum of tree model.

Each column corresponds to one of our 13 x variables.

We just have to summarize the values in varcount.
#compute row percentages
percount20 = bf20$varcount/apply(bf20$varcount,1,sum)
mean of row percentages
mvp20 =apply(percount20,2,mean)
#quantiles of row percentags
qm = apply(percount20,2,quantile,probs=c(.05,.95))

print(mvp20)
crim zn indus chas nox rm age

4

0.05088151 0.03225757 0.02158979 0.01286549 0.14385611 0.15979102 0.05695193
dis rad tax ptratio black lstat
0.09558875 0.04908700 0.09949849 0.08841762 0.04502477 0.14418993

rgy = range(qm)
plot(c(1,p),rgy,type="n",xlab="variable",ylab="post mean, percent var use",axes=FALSE)
axis(1,at=1:p,labels=names(mvp20),cex.lab=0.7,cex.axis=0.7)
axis(2,cex.lab=1.2,cex.axis=1.2)
lines(1:p,mvp20,col="black",lty=4,pch=4,type="b",lwd=1.5)
for(i in 1:p) {

lines(c(i,i),qm[,i],col="blue",lty=3,lwd=1.0)
}

variable

po
st

 m
ea

n,
 p

er
ce

nt
 v

ar
 u

se

crim zn indus chas nox rm age dis rad tax ptratio black lstat

0.
00

0.
05

0.
10

0.
15

0.
20

We see that nox, rm, and lstat get used more in the trees than the other variables.

Let’s compare the BART default run to the BART20 run.
percount = bf$varcount/apply(bf$varcount,1,sum)
mvp = apply(percount,2,mean)
plot(mvp20,xlab="variable number",ylab="post mean, percent var use",col="blue",type="b")
lines(mvp,type="b",col='red')
legend("topleft",legend=c("BART","BART20"),col=c("red","blue"),lty=c(1,1))

5

2 4 6 8 10 12

0.
05

0.
10

0.
15

variable number

po
st

 m
ea

n,
 p

er
ce

nt
 v

ar
 u

se
BART
BART20

We see that the default BART run uses the variable with heavy shrinkage, so that while a variable is in a
tree, the corresponing bottom node mean is shrunk heavily to 0 so that it is of no real importance.

With 20 trees, the means are shrunk less heavily so a variable tends to only come in when it actually does
something!!

A Utility Based Approach to Variable Selection
In this section we illustrate a utility based approach to variable selection using BART inference.

The R package is available at http://www.rob-mcculloch.org/.

This approach uses any inference for a nonlinear function ŷ = f̂(x) and then seeks to find a subset of the
variables in x such there there is a nonlinear function such that that gS(xS) ≈ f̂(x) where xs denotes the
variables in the subset. The approximation should be reasonable close as a practical matter. Practical
significance is emphasized over statistical significance, instead of the other way around.

If we are able to find such a subset of variables then clearly we can make predictions based on the subset
where are as good as those using the full information in x and f̂ .

Many modern statistical/Machine Learning methods give us remarkably interesting f̂ given training data and
the method may be applied with any such f̂ . In addition, BART gives us draws fd, d = 1, 2, . . . , D from the
posterior of f . In this case we can assess our uncertainty by looking at the values d(fd, gS), d = 1, 2, . . . , D
where d is a metric chosen to capture the practical difference in predictions.

Subset Search

Let’s load the R package.
library(nonlinvarsel)
Loading required package: foreach

This approach to variable selection does not require us to tailor the prior or the number of trees.
We can use our default BART inference.

6

http://www.rob-mcculloch.org/

First we will the forward greedy search method for finding variable subsets.
We call the function vsf from the R package. We give the function the x values and the values of f̂ evaluated
at the rows of x.
Note that the x need not be the training values. The user should choose values which are relevant to actual
predictions to be made in application.
In this case we are using bf$yhat.train.mean where bf is our previous BART run using the default prior
and yhat.train.mean is f̂(x) for x in the training data and f̂ the posterior mean from BART.
vsfr = vsf(x,bf$yhat.train.mean)

plot(vsfr)

forward variable selection

R
−

sq
ua

re
d

ls
ta

t

rm no
x

ra
d

ta
x

pt
ra

tio

bl
ac

k

ag
e zn di
s

cr
im

ch
as

0.
84

0.
88

0.
92

0.
96

On the horizontal axis we have the variables as the come into our forward greedy search.

On the vertical axis we have R2, the squared correlation between gS(xs) and f̂(x) for our chosen x values (in
this case the training x).

Here are the R2 values:
print(vsfr)
lstat rm nox rad tax ptratio black age
0.8350978 0.9281046 0.9607106 0.9651039 0.9677454 0.9698201 0.9717911 0.9733491
zn dis crim chas indus
0.9734810 0.9735532 0.9735887 0.9735887 1.0000000

The strong suggestion is that we can predict just as well with the first three variables

For small numbers of variables we can also try a backwards search in which variables are eliminated one at a
time and search over all possible subsets.
backward variable selection
vsbr = vsb(x,bf$yhat.train.mean)

all variable selection

7

vsar = vsa(x,bf$yhat.train.mean)

We can then plot all three searches:
plot all three searches
plotfba(vsfr,vsbr,vsar)

2 4 6 8 10 12

0.
84

0.
88

0.
92

0.
96

number of variables

R
−

sq
ua

re
d

forwards

backwards

all

variable susbset search, forward, backward, and all

In this case all searches give similar results in terms of our ability to find small subsets that predict as well as
our full set of x variables.

To get the actual gS(xS) values for as set of x it may help to fit BART to each found subset.
Note this is at most p subsets (not 2p) where p is the number of x variables.

We can do this computaion in parallel.
ncores=4
library(doParallel)
Loading required package: iterators
Loading required package: parallel
registerDoParallel(cores=ncores)
cat("ncores: ",ncores,"\n")
ncores: 4
cat("number of workers is: ",getDoParWorkers(),"\n")
number of workers is: 4

Now we can use the function bartSubs to fit the BART using each subset and get predictions (posterior
means) for a chosen set of x.

Here we use the subsets from the all possible subsets search (vsar$vL) and use all the x in the training data.
bsubs = bartSubs(x,y,x,vsar$vL,nskip=burn,ndpost=nd)

To see how well are subsets are working, let’s plot the predictions using subsets of size 1,2,3,4 and 12 along

8

with the full BART fit and y.
print(dim(bsubs))
[1] 506 12
fmat = cbind(y,bsubs[,c(1:4,12)],bf$yhat.train.mean)
colnames(fmat) = c("y",paste0('g',c(1:4,12)),'fhat')
pairs(fmat)

y

10
35

10
40

10
40

10 30 50

10 25 40

g1

g2

10 30

10 30 50

g3

g4

10 30 50

10 30 50

g12

10
40

10
40

10
40

10 30 50

10
40fhat

We see that with just three or 4 variables we fit as well as with them all.

Assessing Uncertainty

To assess uncertainty, we look at the posterior distribution of our approximation error. We use the approxi-
mations from the BART refits to all subsets search and root mean squared error (and the training data in
this case) as a measure of approximation error.
sp = sumpost(bf$yhat.train,bsubs,bf$yhat.train.mean,distrmse)
nd,n,p: 10000 506 12

plot(sp,diff=FALSE)

9

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5

It can also be helpful to look at the difference between the approximation error using a variable subset and
the approximation error using the full subset.
plot(sp)

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12

0
1

2
3

summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.00 17.02 21.20 22.53 25.00 50.00

We see that, as a practical matter, with high posterior probability, we can get good predictions using just
three or at most seven, of the variables.

Here are the variable subsets from the all subsets search using 3, 4 and 7 variables.

10

names(x)[vsar$vL[[3]]]
[1] "nox" "rm" "lstat"
names(x)[vsar$vL[[4]]]
[1] "nox" "rm" "rad" "lstat"
names(x)[vsar$vL[[7]]]
[1] "nox" "rm" "age" "dis" "ptratio" "black" "lstat"

And forwards:
names(x)[vsfr$vL[[3]]]
[1] "lstat" "rm" "nox"
names(x)[vsfr$vL[[4]]]
[1] "lstat" "rm" "nox" "rad"
names(x)[vsfr$vL[[7]]]
[1] "lstat" "rm" "nox" "rad" "tax" "ptratio" "black"

11

	Variable Section Using BART
	Variable Selection Using the BART R Package
	The Data
	Running BART
	Variable Selection

	A Utility Based Approach to Variable Selection
	Subset Search
	Assessing Uncertainty

