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Background

» Patients are heterogeneous and may respond differently to
treatment

» Goal of Precision Medicine Identify which patients
respond best to which treatment and tailor treatment to
individual patients

» Personalization based on patient clinical features,
biomarkers, genetic information

» Individualized treatment rule (ITR): providing a therapy
with the best predicted outcome for that individual

» Extension of subgroup analysis

» Such personalized therapy can improve population health
measures



Strategies for obtaining an ITR

» Policy search: directly optimize an estimator of the
expected outcome of a treatment rule by searching over a
class of rules.

» Predictive modeling of patient outcome

» Good prediction accuracy needed to ensure good

performance of ITR
» Flexible prediction models to handle potentially complex
interactions between treatment and covariates



Background

> Why BART?

» Excellent performance as a flexible prediction model
» Natural quantification of uncertainty to assess the
benefit of individualized treatment



Background

» Notation:
» Y : binary outcome of interest (higher values are
desired),
» A={-1,1} : treatment
» X: covariates of interest (biomarkers, clinical
characteristics)
» Individualized Treatment Rule (ITR), g(x):
Treatment rule g(X) is a map from the domain of X to
A, so that a patient with covariate X is recommended

treatment g(X).



Background

» Value function: expected outcome if all patients were
treated according to the rule g,

V(g) = E[E(Y|X, A= g(X))]

» Measures population impact

» Optimal ITR gy: satisfies V(go) > V(g)Vg.

» This is true if go(x) = arg max, E(Y|X, A)

» Assign each patient the treatment which has the highest
expected outcome.



BART Individualized Treatment Rule (ITR)

» BART model
p(Y =1|x,a,f) = ®(uo + f(x, a)),
where f is expressed as the sum of trees.
» f is viewed as the underlying parameter.
» Each MCMC sample results in draws f;,,d =1,....D
from the function f.
» Optimal ITR: choose value of a which maximizes

E(Y|x,a) = p(Y =1|x,a).



BART Individualized Treatment Rule (ITR)

» Posterior predictive distribution integrated over f,

p(Y =1|x,a) = /p(Y = 1|x, a, f)dP(f|Data).

» Use MCMC samples to approximate this integral

p(Y =1lx, a) =1lx,a, fy) = p(x, a).

‘MD

» BART ITR :

goarr(x) = argmax p(x, a).



Inference on value of any ITR g

v

Value function of an ITR g is a function of f given by

\/(g, f) = EX[p(Y = 1|X,g(X), f)]

v

Posterior samples of value function V,(g) given by
plugging in draws of f,

Va(g) = V(g, fa)-

Expectation w.r.t X often done by averaging over
observed covariate distribution.

v

v

These quantify uncertainty about the value function of g



Inference on value of Optimal ITR

» Optimal ITR is a function of f

» Given f, optimal action is
a(x, f) = argmaxp(Y = 1|x, a, ), with corresponding
maximum success probability
p*(x,f) =max, p(Y = 1|x,a,f).

» Value function of optimal ITR gq is also a function of f

V*(g7 f) = EX[p*(X7 f)]

» Posterior samples of value function V*(g) given by
plugging in draws of f,

Vi(g) = V(g fa).

» These quantify uncertainty about the value of the
(random) Optimal ITR.



Simulation settings

» ITR's generated using training dataset with n = 500

» Setting I: Similar to [XYZ"15] but reduced treatment
interaction term. 5 additional binary covariates X, : X,
5 ordinal covariates X, : X, with four categories, and one
or two continuous covariates Xc,, Xcp.

» Setting II: Identical to [KJH14]. Up to 3 independent
continuous markers X1, X5, X3.

» Wide range of settings with no interaction, linear
interaction, nonlinear interaction, varying link functions.



Simulation metrics

» Each ITR applied to a fixed independent test dataset of
size 2000 to determine the value function.

» Average value function across 50 replicate training sets
used to compute the fraction of each ITR value function
relative to the true optimal value function.



Simulations

» Cross-validation: Used to select number of trees
(m = 80,200) and k parameter (0.2,0.8,2.0).
» Competing Methods:
» Regularized Outcome Weighted Subgroup Identification
(ROWSI) [XYZ*15]
» Outcome Weighed Learning (OWL): [ZZRK12]
» Random forest (RF) for outcome prediction with cross
validation of number of trees and minimum node size

» Boosting with classification tree working model (KANG):
[KJH14]



Simulation results |
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Simulation results Il
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Operating Characteristics

» Features demonstrated with n = 500 (left) and n = 5000
(right) training set sample sizes using either (1) complex
treatment interaction model,

P(Y = 1|A, X) = [1 + exp {—0.1 — 0.2X; + 0.2X, — 0.1X3 + 0.5X}
+A(—0.5 — 0.5X; — Xo — 0.3/(X3 > 0.5) +0.5X2)}] "

and (2) no treatment interaction model
P(Y = 1|A, X) = [1 + exp{—0.1 — 0.2X; + 0.2X5 — 0.1X3 + 0.5X7 — 0.3A}] -

» Single dataset predictions of posterior mean treatment
differences vs. truth (top)
» Repeated data simulation results: bias (bottom),

coverage of posterior intervals for value function was 90%
for n = 500 and 95% for n = 5000.



Operating characteristics: Complex interaction
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Operating characteristics: No interaction
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Summarizing the BART ITR

» |ITR based on BART does not directly yield a simple
interpretable rule.

» Separate modeling of outcome from determination of
interpretable rule, by developing an approximation to

BART ITR which is interpretable and has good
performance.

» “Fit-the-fit" strategy, develop a single tree fit to the
posterior mean treatment differences (Data) as a function
of patient characteristics.

» Quality of such an approximation can be assessed using
R? between single tree and BART prediction model.



BMT Example

>

Cohort: 3802 patients receiving reduced intensity
hematopoietic cell transplant between 2011-2013 for a
variety of hematologic malignancies, with data reported
to the Center for International Blood and Marrow
Transplant Research.

Patient, donor, and disease factors: age,
race/ethnicity, performance score, CMV status, disease,
remission status, disease subtypes, chemosensitivity,
interval from dx to tx, donor type, HLA matching between
donor and recipient, prior autologous tx, gender matching
between donor /recipient, comorbidity score, year of tx

Treatment of interest: Conditioning regimen used
(Flu/Mel vs. Flu/Bu)

Observational cohort well balanced between regimens
indicating some equipoise



BMT Example: individual patient inference

» Outcome: 1 year survival (binary due to minimal
censoring <lyr).

» Fitting of BART model provides samples from
p(Y =1|x,a,fy) ford=1,...,D.

» Patient specific difference in 1 yr survival:
p(Y = 1|x,a = Flu/Mel, f;) — (Y = 1|x, a = Flu/Bu, f)

» Plot the posterior mean of these differences for each
patient, sorted by the magnitude of the difference.
Inter-quartile ranges and 95% posterior intervals shown.

» Plot posterior probability that Flu/Mel has higher 1yr
survival than Flu/Bu:

1
5 ST IH(P(Y =1|x,a = Flu/Mel, fy) > P(Y = 1|x,a = Flu/Bu, f,)).
d



BMT Example: individual patient inference
Waterfall plots
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BMT Example: population inference and value

functions
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BMT Example: Explaining to physicians

0.016
n=3802
[-0.075, 0.062
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Summary

» Excellent performance of BART for defining ITR's which
optimize patient outcomes.

» Provides direct inference on the value function of the ITR
through posterior samples

» Post processing of BART inference can provide
approximations which have good performance and are
clinically interpretable.
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