Bayesian Additive Regression Trees (BART) and Precision Medicine

Brent Logan Medical College of Wisconsin Joint work with Prakash Laud, Rob McCulloch, and Rodney Sparapani

Sep 30, 2017

- Patients are heterogeneous and may respond differently to treatment
- Goal of Precision Medicine Identify which patients respond best to which treatment and tailor treatment to individual patients
- Personalization based on patient clinical features, biomarkers, genetic information
- Individualized treatment rule (ITR): providing a therapy with the best predicted outcome for that individual
- Extension of subgroup analysis
- Such personalized therapy can improve population health measures

Strategies for obtaining an ITR

- Policy search: directly optimize an estimator of the expected outcome of a treatment rule by searching over a class of rules.
- Predictive modeling of patient outcome
 - Good prediction accuracy needed to ensure good performance of ITR
 - Flexible prediction models to handle potentially complex interactions between treatment and covariates

► Why BART?

- Excellent performance as a flexible prediction model
- Natural quantification of uncertainty to assess the benefit of individualized treatment

► Notation:

- Y : binary outcome of interest (higher values are desired),
- $A = \{-1, 1\}$: treatment
- X: covariates of interest (biomarkers, clinical characteristics)

► Individualized Treatment Rule (ITR), g(x):

Treatment rule g(X) is a map from the domain of X to A, so that a patient with covariate X is recommended treatment g(X).

Value function: expected outcome if all patients were treated according to the rule g,

$$V(g) = E[E(Y|X, A = g(X))].$$

- Measures population impact
- **Optimal ITR** g_0 : satisfies $V(g_0) \ge V(g) \forall g$.
- This is true if $g_0(x) = \arg \max_a E(Y|X, A)$
- Assign each patient the treatment which has the highest expected outcome.

BART Individualized Treatment Rule (ITR)

BART model

$$p(Y=1|x,a,f) = \Phi(\mu_0 + f(x,a)),$$

where f is expressed as the sum of trees.

- f is viewed as the underlying parameter.
- ► Each MCMC sample results in draws f_d, d = 1, ..., D from the function f.
- ▶ Optimal ITR: choose value of a which maximizes E(Y|x, a) = p(Y = 1|x, a).

BART Individualized Treatment Rule (ITR)

Posterior predictive distribution integrated over f,

$$p(Y = 1|x, a) = \int p(Y = 1|x, a, f) dP(f|\mathsf{Data}).$$

Use MCMC samples to approximate this integral

$$p(Y=1|x,a) \approx rac{1}{D}\sum_{d=1}^{D}p(Y=1|x,a,f_d)\equiv ar{p}(x,a).$$

BART ITR :

$$g_{\scriptscriptstyle \mathsf{BART}}(x) = rg\max_{a} ar{p}(x,a)$$

Inference on value of any ITR g

• Value function of an ITR g is a function of f given by

$$V(g, f) = E_X[p(Y = 1 | x, g(X), f)].$$

 Posterior samples of value function V_d(g) given by plugging in draws of f,

$$V_d(g) = V(g, f_d).$$

- Expectation w.r.t X often done by averaging over observed covariate distribution.
- These quantify uncertainty about the value function of g

Inference on value of Optimal ITR

- Optimal ITR is a function of f
- ► Given f, optimal action is a(x, f) = arg max p(Y = 1|x, a, f), with corresponding maximum success probability p*(x, f) = max_a p(Y = 1|x, a, f).
- Value function of optimal ITR g_0 is also a function of f

$$V^*(g,f) = E_X[p^*(x,f)].$$

 Posterior samples of value function V*(g) given by plugging in draws of f,

$$V_d^*(g) = V^*(g, f_d).$$

 These quantify uncertainty about the value of the (random) Optimal ITR.

Simulation settings

- ITR's generated using training dataset with n = 500
- Setting I: Similar to [XYZ⁺15] but reduced treatment interaction term. 5 additional binary covariates X_A : X_E, 5 ordinal covariates X_a : X_e with four categories, and one or two continuous covariates X_{Ca}, X_{Cb}.
- ► Setting II: Identical to [KJH14]. Up to 3 independent continuous markers X₁, X₂, X₃.
- Wide range of settings with no interaction, linear interaction, nonlinear interaction, varying link functions.

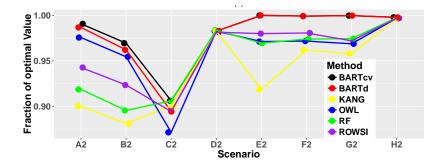
Simulation metrics

- Each ITR applied to a fixed independent test dataset of size 2000 to determine the value function.
- Average value function across 50 replicate training sets used to compute the fraction of each ITR value function relative to the true optimal value function.

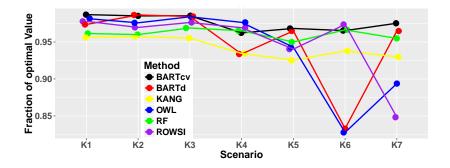
Simulations

- Cross-validation: Used to select number of trees (m = 80, 200) and k parameter (0.2, 0.8, 2.0).
- Competing Methods:
 - Regularized Outcome Weighted Subgroup Identification (ROWSI) [XYZ⁺15]
 - Outcome Weighed Learning (OWL): [ZZRK12]
 - Random forest (RF) for outcome prediction with cross validation of number of trees and minimum node size
 - Boosting with classification tree working model (KANG): [KJH14]

Simulation results I



Simulation results II



Operating Characteristics

Features demonstrated with n = 500 (left) and n = 5000 (right) training set sample sizes using either (1) complex treatment interaction model,

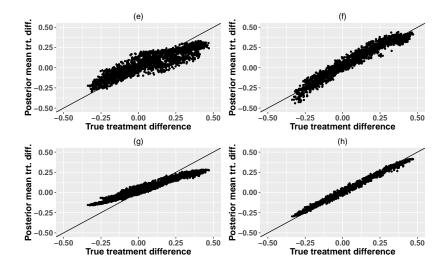
$$P(Y = 1|A, X) = \left[1 + \exp\left\{-0.1 - 0.2X_1 + 0.2X_2 - 0.1X_3 + 0.5X_1^2 + A(-0.5 - 0.5X_1 - X_2 - 0.3I(X_3 > 0.5) + 0.5X_1^2)\right\}\right]^{-1}.$$

and (2) no treatment interaction model

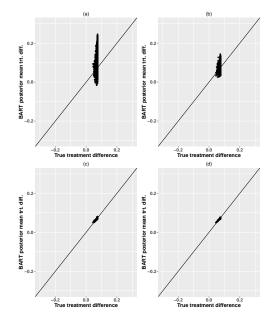
$$P(Y = 1|A, X) = \left[1 + \exp\{-0.1 - 0.2X_1 + 0.2X_2 - 0.1X_3 + 0.5X_1^2 - 0.3A\}\right]^{-1}$$

- Single dataset predictions of posterior mean treatment differences vs. truth (top)
- Repeated data simulation results: bias (bottom), coverage of posterior intervals for value function was 90% for n = 500 and 95% for n = 5000.

Operating characteristics: Complex interaction



Operating characteristics: No interaction



Summarizing the BART ITR

- ITR based on BART does not directly yield a simple interpretable rule.
- Separate modeling of outcome from determination of interpretable rule, by developing an approximation to BART ITR which is interpretable and has good performance.
- "Fit-the-fit" strategy, develop a single tree fit to the posterior mean treatment differences (Data) as a function of patient characteristics.
- Quality of such an approximation can be assessed using *R*² between single tree and BART prediction model.

BMT Example

- Cohort: 3802 patients receiving reduced intensity hematopoietic cell transplant between 2011-2013 for a variety of hematologic malignancies, with data reported to the Center for International Blood and Marrow Transplant Research.
- ► Patient, donor, and disease factors: age,

race/ethnicity, performance score, CMV status, disease, remission status, disease subtypes, chemosensitivity, interval from dx to tx, donor type, HLA matching between donor and recipient, prior autologous tx, gender matching between donor/recipient, comorbidity score, year of tx

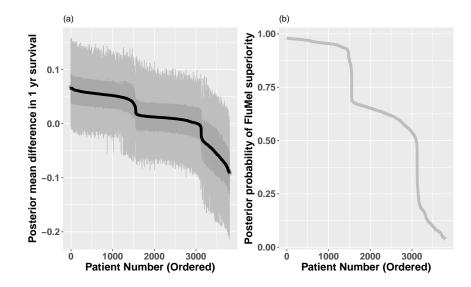
- Treatment of interest: Conditioning regimen used (Flu/Mel vs. Flu/Bu)
- Observational cohort well balanced between regimens indicating some equipoise

BMT Example: individual patient inference

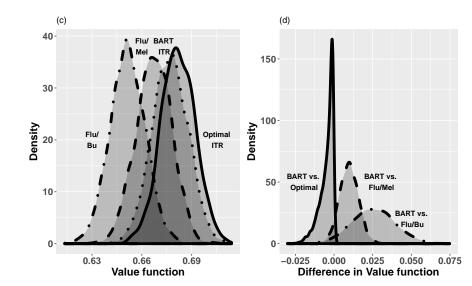
- Outcome: 1 year survival (binary due to minimal censoring <1yr).
- ► Fitting of BART model provides samples from p(Y = 1|x, a, f_d) for d = 1,..., D.
- Patient specific difference in 1 yr survival: p(Y = 1|x, a = Flu/Mel, f_d) - (Y = 1|x, a = Flu/Bu, f_d)
- Plot the posterior mean of these differences for each patient, sorted by the magnitude of the difference. Inter-quartile ranges and 95% posterior intervals shown.
- Plot posterior probability that Flu/Mel has higher 1yr survival than Flu/Bu:

$$\frac{1}{D}\sum_{d} I(P(Y=1|x,a=\mathsf{Flu}/\mathsf{Mel},f_d) > P(Y=1|x,a=\mathsf{Flu}/\mathsf{Bu},f_d)).$$

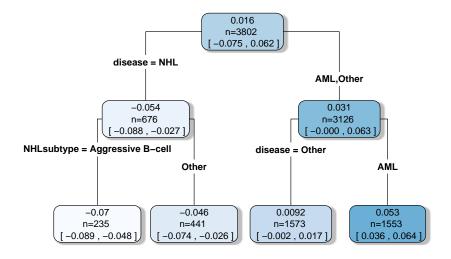
BMT Example: individual patient inference Waterfall plots



BMT Example: population inference and value functions



BMT Example: Explaining to physicians



Summary

- Excellent performance of BART for defining ITR's which optimize patient outcomes.
- Provides direct inference on the value function of the ITR through posterior samples
- Post processing of BART inference can provide approximations which have good performance and are clinically interpretable.

References

C. Kang, H. Janes, and Y. Huang, Combining biomarkers to optimize patient treatment recommendations, Biometrics **70** (2014), no. 3, 695–707 (eng), PMID: 24889663 PMC4248022.

Y. Xu, M. Yu, Y. Q. Zhao, Q. Li, S. Wang, and J. Shao, *Regularized outcome weighted subgroup identification for differential treatment effects*, Biometrics **71** (2015), no. 3, 645–653 (eng), PMID: 25962845.

Y. Zhao, D. Zeng, A. J. Rush, and M. R. Kosorok, *Estimating Individualized Treatment Rules Using Outcome Weighted Learning*, Journal of the American Statistical Association **107** (2012), no. 449, 1106–1118 (ENG), PMID: 23630406 PMC3636816.