Introduction to BART Bootcamp

Purushottam (Prakash) Laud Medical College of Wisconsin, Division of Biostatistics

with rest of the day presented by

Rodney Sparapani, Brent Logan&Rob McCullochMedical College of Wisconsin
Division of BiostatisticsArizona State Universiy
School of Mathematical &
Statistical Sciences

Beer, Brats & Biostats BART Bootcamp, MCW, OktoberFest 2017

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 目 ● 今 < ⊙ < ○ >

Objectives and Outline

Objectives

- Warm-up act for the rest of the day!
- Get acquainted with conceptual differences between traditional and modern regression methods
- Understand implications of parameter-free regression

Outline

- Quick look at traditional regression
- Regression with a single tree
- Ensembles of trees: Bagging, Boosting, Random Forests and BART

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example(s)

Today's Agenda

You already know it!

 Dr. McCulloch: BART, what it is, how it works, how to use it, its advantages

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

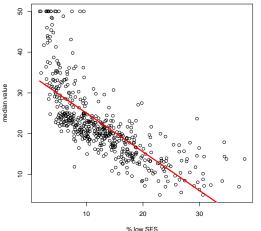
- ► Dr. Sparapani: Models for binary data, survival data
- Dr. Logan: Individualized treatment rules

Boston Housing Data

Median value of houses and neighborhood characteristics

- ► Dependent (outcome) variable: median value (medv)
- Predictor variable: percent of population with low SES (Istat)

Scatter diagram and linear fit

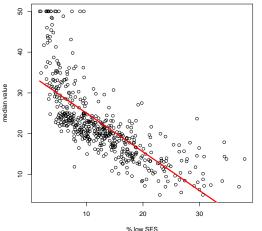


Boston Housing Data

Median value of houses and neighborhood characteristics

- ► Dependent (outcome) variable: median value (medv)
- Predictor variable: percent of population with low SES (Istat)

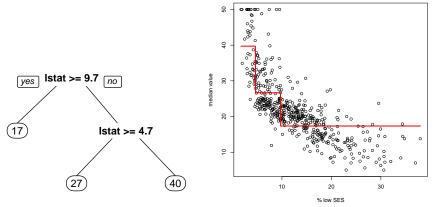
Scatter diagram and linear fit



Carl Friedrich Gauss Pierre-Simon Laplace About 220 years ago

Sac

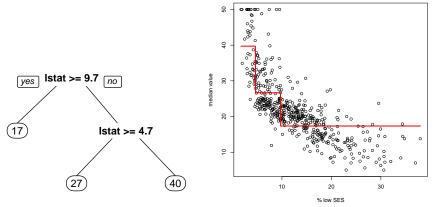
Single small tree



Breaking up predictor axis into pieces Fit constant values of (mean) outcome on these pieces

Sac

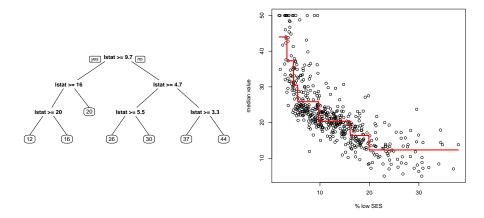
Single small tree



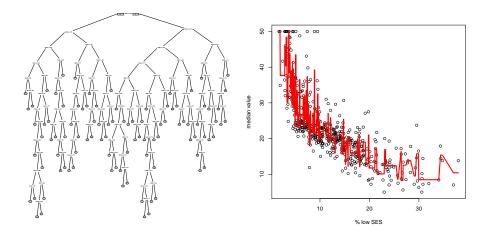
Breaking up predictor axis into pieces Fit constant values of (mean) outcome on these pieces Leo Breiman About 1980

nac

Single medium tree

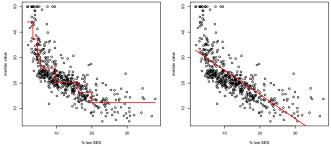


Single large tree



▲□▶▲□▶▲目▶▲目▶ 目 のへで

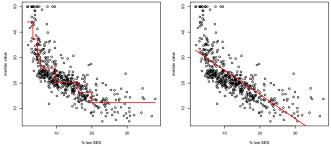
Back to 7-node tree: interpretation?



- Linear regression does not fit well but we can describe the fit: Median value drops by 6 units for every 5% increase in persons of low SES.
- If we had transformed to log(median value), we could say something like: for every 5% increase in persons of low SES median value drops by x percent.

200

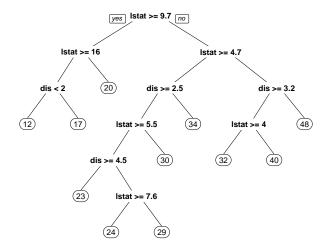
Back to 7-node tree: interpretation?



- Linear regression does not fit well but we can describe the fit: Median value drops by 6 units for every 5% increase in persons of low SES.
- If we had transformed to log(median value), we could say something like: for every 5% increase in persons of low SES median value drops by x percent.
- For tree regression we do not need to hunt for the right transformation, if even such exists. But simple interpretation is a challenge. One can describe tree fit by line segments.
- For example, additional increase in percent low SES beyond 20% does not affect median value. Fairly constant slope between about 7 and 20 percent.

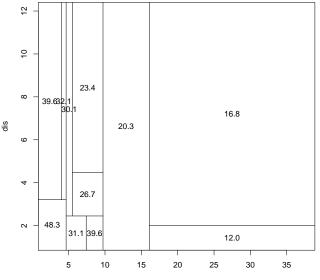
More than one predictor

Boston data: weighted mean distance from 5 major employment centers



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

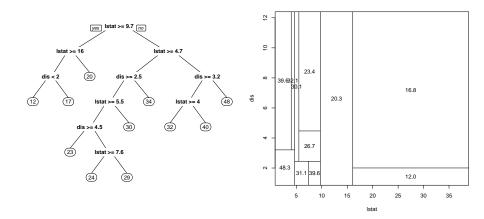
Bivariate plane cut into pieces



Istat

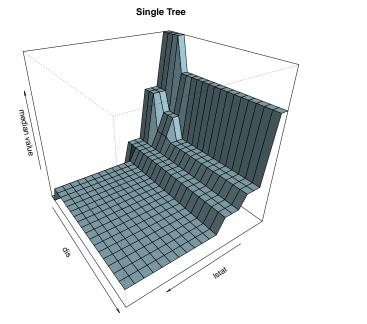
< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Tree and partition



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3-d fit



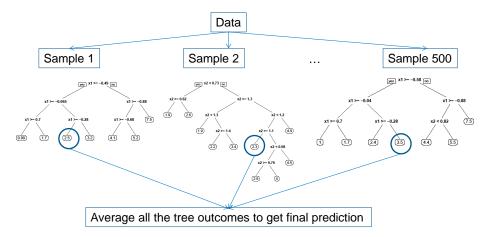
From single tree to ensemble of trees

- ► Single trees lead to jagged fits, spiky functions
- ► Use multiple trees, then average or add after scaling
- How to choose these multiple trees?
- ► Four main methods:
 - Bagging (Bootsrap aggregate) Leo Breiman About 1995
 - Boosting Schapire 1990
 - Random Forests (Bagging plus random predictor selection) Leo Breiman About 2000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

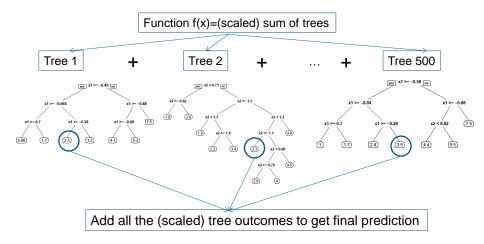
 BART (Bayesian additive regression trees) Chipman, George, McCulloch 2010

Bagging and Random Forests



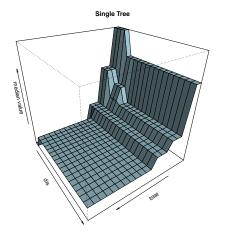
▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - のへぐ

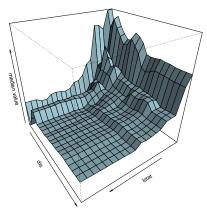
Boosting and BART



Random Forest fit to Boston housing data

Random Forest, 500 Trees median value 0% Istat

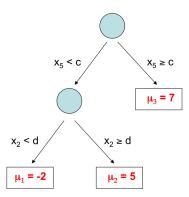




Random Forest, 500 Trees

Regression Tree Model

T denotes the tree structure and branch decision rules $M = \{\mu_1, \mu_2, \dots, \mu_b\}$ denotes the terminal nodes $g(x_i; T, M)$ is a regression tree function



$$y_i = g(x_i; T, M) + \epsilon_i$$

BART: Bayesian Additive Regression Trees

Chipman, George & McCulloch (CGM10); 2010 AnnApplStatist

 $y_i = g(x_i; T_1, M_1) + g(x_i; T_2, M_2) + \dots + g(x_i; T_m, M_m) + \epsilon_i$

where m is somewhat large (50 or 200 or 1000).

$$egin{array}{rcl} f(x_i) &=& \displaystyle{\sum_j}g(x_i;T_j,M_j) \ f &\sim& {\sf BART} \end{array}$$

・ロト ・ 母 ト ・ 王 ト ・ 王 ・ つへぐ

BART Prior

Prior 1: Distribution for tree depth Prior 2: Distribution for covariate selection Prior 3: Distribution for split point Prior 4: Distribution for value at terminal node Prior 5: Distribution for ϵ

Details in CGM10; "many small trees" principle

Default prior settings					
Number of terminal nodes	1	2	3	4	5+
Prior probability	0.05	0.55	0.28	0.09	0.03

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

LVH (Left Vetricular Hypertrophy) Example

- ► Diagnosing LVH using patient chararacteristics and ECG data
- Gold standard based on LVM index ratio of observed LVM from MRI and body surface area
- Multi-Ethnic Study of Atheroclerosis (MESA), 2000-2013, of 4953 subjects, 7855 MRI's with ECG
- Two randomly split groups

Visit	Group 1	Group 2	Total
Baseline	2501	2452	4953
10 years	1430	1472	2902
Total	3931	3924	7855

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Predicting LVH with ECG with MESA criteria

Jain et.al., American Heart Journal, 2010

LVH by ECG	LVH	by MRI			
MESA	Yes	No	Total	Rates	
Yes	29	870	899	True Pos.	3.2%
No	18	6938	6956	True Neg.	99.7%
Total	47	7808	7855		

	MESA		
	Sens.	Spec. 88.9%	
	61.7%	88.9%	
Predictive	Pos.	Neg.	
Value	43.0%	94.4%	

LVH Prevalence \thickapprox 12% Schirmer, Lunde and Rasmussen. European Heart Journal 1999

Predicting LVM Index with ECG data using BART

- ▶ 193 covariates: $R^2 = 0.533 (0.443)$ in-sample (out-of-sample)
- Demographics: age and gender
- ► Body size: height, weight and body mass index (BMI)
- ► ECG global: PR interval, P axis, QRS interval and axis
- ► ECG lead measurements: 46 variables X 4 leads
- ▶ 8 covariates: $R^2 = 0.464 (0.408)$ in-sample (out-of-sample)
- Demographics: gender
- Body size: BMI
- ► ECG global: QRS interval
- ► ECG wave amplitude: T (V2 and I), STJ (V2), S (V2), R (V5)

Predicting LVH with ECG data using BART

LVH by ECG	LVH I	by MRI			
BART	Yes	No	Total	Rates	
Yes	31	197	228	True Pos.	13.6%
No	16	7611	7627	True Neg.	99.8%
Total	47	7808	7855		

	ME	SA	BART		
	Sens. Spec. 61.7% 88.9%		Sens.	Spec.	
	61.7%	88.9%	66.0%	97.5%	
Predictive	Pos.	Neg.	Pos.	Neg.	
Value	43.0%	94.4%	78.3%	95.5%	

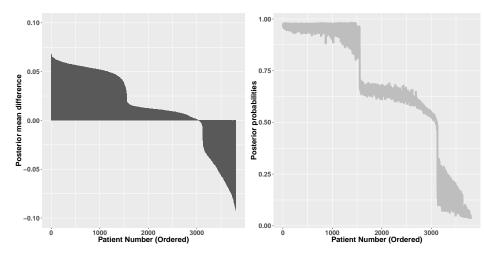
Brief preview of individualized treatment selection

- ► Two treatments: Flu/Bu and Flu/Mel
- ► Outcome: 1-year survival
- Patient, donor and disease factors: Age, Race/ethnicity, KPS, CMV status, disease, remission status, disease subtypes, chemosensitivity, interval from dx to tx, donor type, HLA matching, comorbidity score, prior autotx, gender matching, year of tx
- 3802 patients receiving Flu/Bu or Flu/Mel RIC regimens between 2011-2013

What can BART produce?

Dr. Logan will elaborate on the example and ITRs and related inference. Here is a quick preview of things to look for:

ITR Example: FluMel minus FluBu



◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○ < ⊙ < ⊙

Enjoy the rest of the day with BART!

laud@mcw.edu