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Survival analysis with Cox Proportional Hazards

Cox 1972 JRSS-B
Data: (si, δi, xi)
0 = t(0) < · · · < t(J) <∞: distinct ordered death, si, times

(0, t(1)] . . . (t(J−1), t(J)]

λ(t, xi) = λ0(t)eβ′xi Linear proportionality

[β|λ0(t)] =
∏

i

eβ′xi∑
j∈R(ti) eβ′xj

Partial Likelihood

Ŝ0(t) = e−Λ̂0(t) where Λ̂0(t) =
∑
ti≤t

δi∑
j∈R(ti) eβ̂′xi

Ŝ(t, xi) = Ŝ0(t)exp(β̂′xi)



Survival analysis with BART
Sparapani et al. 2016 Statistics in medicine

0 = t(0) < · · · < t(K) <∞ : distinct ordered, si, times

yij|pij
ind∼ B (pij) where j = 1, . . . , Ji = arg min

j
si ≤ t(j)

yij = δi I (j = Ji)

pij = p(t(j), xij) where xij = xi(t(j))

= Φ(f(t(j), xij)) where f prior∼ BART

[y|p] =
N∏

i=1

Ji∏
j=1

pyij
ij (1− pij)

1−yij Likelihood

S(t(j), xij) = P
[
t > t(j)|xij

]
=
∏
j′≤j

(1− pij′)

Discrete time intensity model⇒ longitudinal binary BART



Survival analysis with BART and inference

We generate samples of f from the posterior with MCMC

f̂(t, x) = M−1
∑

m
fm(t, x) Estimate f

Ŝ(t, x) = M−1
∑

m
Sm(t, x) Survival function

(S0.025(t, x), S0.975(t, x)) 95% Credible Interval

RI(t, xn(t), xd(t)) =
p(t, xn(t))
p(t, xd(t))

Relative Risk or Intensity

=
Φ(f(t, xn(t)))
Φ(f(t, xd(t)))



Survival analysis with BART and
Friedman’s partial dependence function

Friedman 2001 AnnStat

f(t, x) = f(t, xS, xC) BART function where x = [xS, xC]

f(t, xS) = ExC [f(t, xS, xC)|xS]

≈ N−1
∑

i
f(t, xS, xiC)

fm(t, xS) ≡ N−1
∑

i
fm(t, xS, xiC)

f̂(t, xS) ≡ M−1
∑

m
fm(t, xS)



surv.bart and mc.surv.bart input and output
post=surv.bart(x.train, times=times, delta=delta,

..., ndpost=M, keepevery=10) or
post=mc.surv.bart(x.train, times=times, delta=delta,

..., ndpost=M, keepevery=10, mc.cores=2, seed=99)

Input vector times with K distinct values and x.train: xi
x1
x2
...

xN


Output post, of type survbart which is essentially a list

of matrices including: post$surv.train: Ŝm(t(j), xi) Ŝ1(t(1),x1) ... Ŝ1(t(K),x1) ... Ŝ1(t(1),xN) ... Ŝ1(t(K),xN)

...
...

...
...

...
...

...
ŜM(t(1),x1) ... ŜM(t(K),x1) ... ŜM(t(1),xN) ... ŜM(t(K),xN)





surv.pre.bart input and output
post <- surv.pre.bart(times, delta, x.train,
x.test=x.train)

Output a list containing the data transformed such as
matrix pre$tx.train and vector pre$y.train:

t(1) x1
...

...
t(J1) x1
...

...
t(1) xN
...

...
t(JN) xN





y11 = 0
...

y1J1 = δ1
...

yN1 = 0
...

yNJN = δN



N.B. for pre$tx.test Ji = K



predict.survbart input and output

pred <- predict(post, pre$tx.test, mc.cores=1, ...)

Input matrices: x.test: xi
x1
x2
...

xQ


Output pred of type survbart with pred$surv.test: Ŝm(t(j), xi) Ŝ1(t(1),x1) ... Ŝ1(t(K),x1) ... Ŝ1(t(1),xQ) ... Ŝ1(t(K),xQ)

...
...

...
...

...
...

...
ŜM(t(1),x1) ... ŜM(t(K),x1) ... ŜM(t(1),xQ) ... ŜM(t(K),xQ)





Survival analysis: advanced lung cancer prognosis

Loprinzi et al. 1994 JCO

I The North Central Cancer Treatment Group
surveyed 228 advanced lung cancer patients

I Study focused on prognostic variables
I Patient responses paired with some clinical variables
I We control for age, gender and

Karnofsky performance score as rated by the physician
I We will compare males to females

with Friedman’s partial dependence function
I lung data set in the BART R package

system.file(’demo/lung.surv.bart.R’, package=’BART’)
system.file(’demo/geweke.lung.surv.bart.R’,
package=’BART’)



Friedman’s partial dependence function with
95% credible intervals: M (blue) vs. F (red)
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Geweke convergence diagnostics:
Advanced lung cancer example
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Geweke convergence diagnostics:
live demonstration

I system.file(’demo/geweke.surv.bart.R’,
package=’BART’)

I Simulated data set: N = 100, P = 20
I ti ∼ Wei

(
2, ef(xi)

)
I adapted from Friedman’s five-dimensional test function

Annals of Statistics 1991
I f(xi) = 3 + sin(πx1x2)− 2(x3 − 0.5)2 + x4 − 0.5x5
I 20% censoring



Diabetes and recurrent hospital admissions
I We have IRB approval to study a cohort of newly diagnosed

diabetes patients from a single health care system

I We have the electronic health records (EHR) for these patients
from 2007-2012: prior records may, or may not, be available

I EHR are an omnibus of digital health care information

I We focus on 82 covariates: patient demographics, health
insurance, health care charges, diagnoses, procedures,
anti-diabetic therapy, laboratory values and vital signs

I By its nature, EHR data is fundamentally time-varying

I EHR covariates are occasionally missing even when carrying the
last value forward

I Imputed 15 continuous variables with Sequential BART
(Xu, Daniels & Winterstein 2016 Biostatistics)



Diabetes and recurrent hospital admissions

I 488 patients followed 5 years from 2008-2012
the survival rate was high 0.939 (noninformative censoring)
yet experienced a high rate of hospital admissions: 525 total

I For diabetes, which covariates increase the risk of admission?
What about the number of previous admissions or an acutely
recent admission?

I What are the functional forms of the covariates i.e. linear,
quadratic, logarithm, etc.? Are the covariate effects additive or
multiplicative?

I Are there interactions? Are these effects constant with respect to
time, i.e., proportionality assumption?

I We want to avoid precarious restrictive assumptions hence we
chose to use Bayesian Additive Regression Trees (BART)



Recurrent event analysis with BART

Data: (si, ti1, . . . , tiNi, xi(t))
(0, t(1)] . . . (t(K−1), t(K)]: grid of distinct ordered times, tik

yij|pij
ind∼ B (pij) j = 1, . . . , Ji

yij = max
k=1,...,Ni

I
(
tik = t(j)

)
pij = Φ(f(t(j), xij)) f prior∼ BART

[y|p] =

N∏
i=1

Ji∏
j=1

pyij
ij (1− pij)

1−yij Likelihood

Λ(t(j), xij) =

∫ t(j)

0
dΛ(t, xi(t)) =

j∑
j′=1

pij′

Discrete time intensity model⇒ longitudinal binary BART



Semi-Markov process and conditional independence
I (ti1, . . . , tiNi) are not independent; rather, they are conditionally

independent given xi(t) and the event history which is denoted
by Ni(t)

I Ni(t) is the counting process of events and Ni ≡ Ni(si)
When Ni = 0, then tiNi = ti0 ≡ 0

I Semi-Markov process, i.e., condition on summaries of the event
history just prior to time t which is denoted by t−

Counting process just prior to time t Ni(t−)

Sojourn time from the last event vi(t) ≡ t− tiNi(t−)

yij|pij
ind∼ B (pij)

pij = Φ(f(t(j), x̃ij))

where x̃ij =
[
vi(t(j)),Ni(t(j−1)), xij

]



Diabetes and recurrent hospital admissions

Patients Admissions
Number of Admissions 488 525
0 308 (63.0) 0
1 79 (16.2) 79 (15.0)
2-3 50 (10.3) 115 (21.9)
4-16 51 (10.5) 331 (63.1)



Diabetes and recurrent hospital admissions
I We focus on 82 covariates: patient demographics, health

insurance, health care charges, diagnoses, procedures,
anti-diabetic therapy, laboratory values and vital signs

I These covariates are inherently time-dependent and occasionally
missing even when carrying the last value forward

I Imputed 15 continuous variables with Sequential BART
8 lab values and 7 vital signs
Xu, Daniels & Winterstein 2016 Biostatistics

I Variable selection: Decoupling Shrinkage and Selection (DSS)
Hahn & Carvalho 2015 JASA; McCulloch et al. 2015 JSM

I Divided the cohort at random into training and validation sets

I Risk agonists: insulin treatment, peripheral vascular disease
(PVD) and the number of previous admissions, Ni(t−)



Diabetes and recurrent hospital admissions
Patients Admissions

Gender 488 525
M 216 (44.3) 228 (43.4)
F 272 (55.7) 297 (56.6)
Race 488 525
Black 174 (35.7) 265 (50.5)
White 314 (64.3) 260 (49.5)
Age 488 525
Mean, SD 60.9 15.0 60.3 15.7
ZIP3 area 488 525
532/urban 378 (77.5) 454 (86.5)
530/suburb 110 (22.5) 71 (13.5)
Insurance and Age 488 525
Government 65+ 191 (39.1) 224 (42.7)
Government<65 138 (28.3) 208 (39.6)
Commercial<65 143 (29.3) 71 (13.5)
Other<65 16 ( 3.3) 22 ( 4.2)



Diabetes and recurrent hospital admissions

95%
Relative Credible

Patients Admissions Intensity Interval
Insulin 488 525 2.39 1.56, 3.25
Yes 206 (42.2) 391 (74.5)
No 282 (57.8) 134 (25.5)
PVD 488 525 2.90 2.00, 3.89
Yes 272 (55.7) 488 (93.0)
No 216 (44.3) 37 ( 7.0)

partial dependence function



Hospital admission risk profiles

Ni(t) with time in months
Risk Insulin PVD 0 12 24 36 48 60
Low 0 0 0 0 0 0 0 0
Medium 1 0 0 0 1 1 1 1
High 1 1 0 1 2 3 4 4



Risk profiles: Cumulative Intensity
partial dependence function

0 10 20 30 40 50 60

0
1

2
3

4
5

t (months)

Λ
(t)

 a
nd

 C
D

I(t
)

.5

2

0



Risk profiles: Relative Intensity and 95% Credible Intervals
partial dependence function
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Risk profiles: Relative Intensity & 95% Prediction Intervals
partial dependence function
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Diabetes and hospital admission risk
I Some diabetes patients are at high risk for hospital admission

I diagnosed with PVD
I prescribed insulin therapy
I with a recent hospital admission
I and/or several previous hospital admissions

I Health policy implications: Diabetic patients’ health care
post-discharge should be carefully orchestrated to ensure the
delivery of quality clinical care which maximizes healthy
outcomes while preventing adverse events and costly
unnecessary hospital admissions

I BART package contains a roughly 20% random sample
50 patients from training: ydm20.train & xdm20.train
50 patients from validation: xdm20.test

I complete data set at http:
//www.mcw.edu/FileLibrary/Groups/Biostatistics/
TechReports/TechReports5175/tr064.tar.

http://www.mcw.edu/FileLibrary/Groups/Biostatistics/TechReports/TechReports5175/tr064.tar
http://www.mcw.edu/FileLibrary/Groups/Biostatistics/TechReports/TechReports5175/tr064.tar
http://www.mcw.edu/FileLibrary/Groups/Biostatistics/TechReports/TechReports5175/tr064.tar


Diabetes and hospital admission risk
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Competing risks
Data: (si, δi, xi(t)) where δi ∈ {0, 1, 2}
0 = t(0) < · · · < t(K) <∞: distinct ordered, si, times

y1ij = I (δi = 1) I (j = Ji) , j = 1, . . . , Ji

y1ij|p1ij ∼ B (p1ij)

p1ij = Φ(f1(t(j), xij)) where f1 ∼ BART
y2ij = I (δi = 2) I (j = Ji) , j = 1, . . . ,Ki

where Ki = Ji − I (δi = 1)

y2ij|p2ij ∼ B (p2ij)

p2ij = Φ(f2(t(j), xij)) where f2 ∼ BART

[y|p] =

N∏
i=1

 Ji∏
j=1

py1ij
1ij (1− p1ij)

1−y1ij


×

 Ki∏
j=1

py2ij
2ij (1− p2ij)

1−y2ij

 Likelihood



Competing risks

S(t, xi(t)) = 1− F(t, xi(t)) =

k∏
j=1

(1− p1ij)(1− p2ij)

where k = arg max
j

[
t(j) ≤ t

]
F1(t, xi(t)) =

∫ t

0
S(u−, xi(u−))λ1(u, xi(u))du

=

k∑
j=1

S(t(j−1), xi(t(j−1)))p1ij

F2(t, xi(t)) =

∫ t

0
S(u−, xi(u−))λ2(u, xi(u))du

=

k∑
j=1

S(t(j−1), xi(t(j−1)))(1− p1ij)p2ij



Liver transplant
Kim et al. 2006 Hepatology

I Mayo Clinic Liver transplant waiting list data from 1990-1999
I During this period, liver allocation policy was flawed
I Donor livers from subjects with blood type O can be used by

patients with A, B, AB or O blood types, whereas an A, B, AB liver
can only be used by an A, B, AB recipient respectively

I Type O subjects on the waiting list were at a disadvantage since
the pool of competitors was larger for type O donor livers

I Current policies have evolved and now depend on each individual
patient’s risk and need which are assessed and updated regularly
while a patient is on the waiting list

I However, the overall donor liver shortage remains acute today
I transplant data set in BART R package: N = 815
I system.file(’demo/liver.crisk.bart.R’,
package=’BART’)



Liver transplant Competing Risks for Type O patients
Aalen-Johansen estimator available in survival R package
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Liver transplant Competing Risks for Type O patients
Aalen-Johansen and BART
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