
Fitting the fit, variable selection using
surrogate models and decision analysis, a

brief introduction and tutorial

Carlos Carvalho
McCombs School of Business, University of Texas at Austin

and
Richard P. Hahn

School of Mathematical and Statistical Sciences, Arizona State University
and

Robert McCulloch
School of Mathematical and Statistical Sciences, Arizona State University

April 21, 2020

Abstract

This paper describes a practical procedure for Bayesian variable selection in non-
linear regression and classification models. A first stage model is fit in which all
variables are included. Typically, this first stage will not include the prior belief
that only a small subset of variables is needed, but it may. Given this first stage
fit, we look for functions of variable subsets which approximate the predictions from
the first stage fit well. A computationally efficient surrogate model is used to search
for approximating functions which depend on low numbers of predictors. Rather
than assuming there is some true sparcity, we seek sparse approximations to the
non-sparse truth. In the case that our first stage fit involves a Bayesian assessement
of the uncertainty, we use this to gauge the uncertainty of our approximation error.
If we learn that, with high probability, we can obtain a good approximation to the
non-sparse truth using a subset of the variables, we deem that subset to be of inter-
est. We demonstrate the procedure in empirical examples involving prediction and
classification and simulated examples.

Keywords: BART, nonlinear, Machine Learning

1

1 Introduction

Model selection, and more particularly variable selection has been, and continues to be, a

major focus of statistical research and practice. In the case of the linear model, there is a

huge literature on variable selection. Researchers often want to know which variables are

most important.

In the case of nonlinear modeling, methods such as random forests and deep neural nets

have been proven to be remarkably effective. While it is common to hear complaints that

these methods are “black box” and “uninterpretable”, these methods typically provide

measures of variable importance.

Carvalho et al. (2020) (CHM) develop an alternative approach to variable selection for

nonlinear models which is generally applicable. Rather than building on the dubious notion

that a variable has a meaningful importance on its own, CHM look for subsets of variables

such that a function of the subset can approximate a non-sparse fit well as a practical

matter. The CHM development for nonlinear models extends the ideas in Hahn & Carvalho

(2015) designed for linear models. This paper provides an introduction to CHM and a

tutorial on the usage of the corresponding R package nonlinarsel.

A simple way to get a feeling for the CHM approach is to think of the variable selection

problem as one of function approximation. We outline our approach for the problem where

the response Y is numeric, but the ideas extend nicely to the general case. Our basic

statistical model is that we seek to know E(Y |x) where Y is a variable we wish to predict

given the information in a vector of predictor variables x. The vector x may contain many

variables and variable selection involves choosing a subset of variables S such that xS (the

subset of predictor variables indicated by S) enables us to predict “almost” as well as the

full x.

It is assumed that a first stage inference has successfully uncovered a trusted estimate f̂

such that E(Y |x) ≈ f̂(x). The approach then seeks subsets S and surrogate functions γS

such that γS(x) ≈ f̂(x) for x of interest. Crucially, γS only depends on x through the subset

xS. Can we find a function which only uses a subset of the variables and, as a practical

matter, is an effective surrogate in the sense that it approximates the correct function well?

2

We find that this approach leads to a method which reliably finds useful subsets. In the

case where Bayesian inference about f is available, we report the posterior distribution of

the approximation error to gauge the uncertainty.

Our approach consists of the following steps:

1. Obtain an inference for f .

2. Seek approximations to the inferred f which only use a subset of the variables:

fit the fit !!

3. Quantify uncertainty using the posterior distribution of the approximation error.

For our step (1) inference we typically use Bayesian Additive Regression Trees (BART

(Chipman et al. (2010))). BART has the advantage that in typical statistical investigations,

it finds a good fit without a lot of tuning. This is what is needed for steps (1) and (2)

above. Our method can also be used with other approaches to nonlinear function estimation

such as neural nets. We find that BART is easy to use and allows for assessment of the

uncertainty through the posterior as represented by Markov Chain Monte Carlo (MCMC)

draws which is done in step (3). For large data sets we often use XBART (Hahn & He

(2020)).

For step (2) we use large trees fit to the fit from step (1). Given a subset of variables S,

“fit the fit” means we work with the data (xS, f̂(x)) rather than the data (x, y). We fit a

large tree to this data and the large tree is our γS(x). This gives us a fast way to search

through variable subsets without having to refit BART or a some other complex modeling

strategy.

Note that when fitting large trees to data (x, y), we need to worry about over fitting. We

do not have this concern when fitting the fit f̂ . We are using the large tree as a simple,

general, approach to function approximation, as opposed function inference. We illustrate

our use of big trees in Section 4.

In practice our formulation of the problem leads to an important conceptual simplification.

We simply seek effective surrogates γS, depending on a subset S of the x variables, such

that γS(x) ≈ f̂(x) ≈ E(Y | x). We develop simple search mechanisms to find good γS.

3

But, we do not need any guarantee that we have found the optimal γS. If we find a good

one we are in business. If we find a better one later that is fine too. There are no tricky

inferential issues related to estimation of a true function γS or the true subset S. Given

any found γS, we can simply assess our uncertainty about it’s effectiveness as a surrogate

based on the inference in step (1). This is step (3).

Note that an essential feature of our approach, which distinguishes it from others, is that

the investigator must choose the set x values at which f(x) is needed. Because our method

focuses on the practical value of variable selection, the user must specify what the model

is going to be used for and this means we need to decide on a set x for which we need

E(Y |x) = f(x).

Additionally, since steps (2) and (3) are driven by the goal of approximation, the choice of

metrics that are used to measure how well an approximation is working is a fundamental

part of the procedure. Often we use standard statistical metrics, but we emphasize the

problem dependent metrics motivated by the practical problem being addressed can easily

be incorporated into the steps (2) and (3).

CHM provide a more formal development of our approach based on Bayesian decision

theory and discuss how to it relates to other approaches. In addition, an extended example

is discussed.

In Section 2, we present the cars data example which looks at predicting the prices of used

cars. We use the cars data as our running example in Sections 3 to 5. In Section 3 we

illustrate using BART to do our step (1) inference. In Section 4 we show how we can use big

trees to quickly approximate nonlinear functions. In Section 5.1 we illustrate step (2) and

find subsets of the variables that approximate our our inference in step (1) well. In Section

5.2 we illustrate step (3), showing how BART draws from the posterior can be used to assess

our uncertainty. In Section 5.3 we explore an alternative approach for finding surrogate

models. In Section 5.4 we compare our inferential conclusions with the more traditional

out-of-sample analysis. In Section 6 we look at some simulated data. In Section 7 we look

at data on penalties in hockey games where the goal is to predict which team will get the

next penalty in a National Hockey League game (Abrevaya & McCulloch (2014)). Note

4

that the hockey data is a classification problem whereas the previous problems were all

regression problems in which we seek to predict a numeric response. Finally, in Section 8

we conclude.

2 The Cars Data

In this section we introduce the used cars data set. The goal of the study was to predict

the sales price of a used car given characteristics of the car.

Let’s read in the data and have a quick look at it.

cdat = read.csv("http://www.rob-mcculloch.org/data/susedcars.csv")

dim(cdat)

[1] 1000 7

names(cdat)

[1] "price" "trim" "isOneOwner" "mileage" "year"

[6] "color" "displacement"

Each of the 1000 observations corresponds to a car. The response y is the variable price

which is the price the used car was sold for in dollars. To give our example an generic feel,

we will call the response y. Let’s also change the unit to thousands of dollars.

y = cdat[,"price"]/1000 #unit is now thousands of dollars

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.995 12.995 29.800 30.583 43.992 79.995

Note that these cars are used Mercedes and hence still quite expensive.

The rest of the variables are our explanatory x variables. We note that two interesting

variables in x are year and mileage which is the model year of the car and the mileage

(number of miles). So, the bigger year is, the newer the car is. The other variables are

categorical.

5

summary(cdat[,"year"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

1994 2004 2007 2007 2010 2013

summary(cdat[,"mileage"])/1000 #thousands of miles

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.997 40.133 67.919 73.652 100.138 255.419

cor(cdat[,c("price","year","mileage")])

price year mileage

price 1.0000000 0.8805373 -0.8152458

year 0.8805373 1.0000000 -0.7447292

mileage -0.8152458 -0.7447292 1.0000000

An overly simple interpretation of the correlations above suggests that new cars with low

mileage sell for more, a plausible result.

Several of the variables in x are categorical. To run BART, using the BART package, we will

need to express these factors as dummy variables. To do this, we load the nonlinvarsel

library and use the function nonlinvarsel::bartModMat. We will use the generic name x

for the resulting set of variables.

library(nonlinvarsel)

cdat$mileage = cdat$mileage/1000

x = bartModMat(cdat[,-1])

The matrix x now includes all of the numerical explanatory variable as well as the categor-

ical variables expanded into dummy indicator variables.

dim(x)

[1] 1000 15

Our original 6 variables resulted in 15 variables after the dummies are created. Note that

for use in BART, a categorical variables with k levels is expressed using all k dummies (one

for each level of the variable) unlike in linear regression where we use k-1 dummies.

6

As discussed in Section 1, we need to choose a set of x vectors and which to assess our

approximations to E(Y | x) = f̂(x). Ideally, the user thinks carefully about what the set

of x for which predictions will be needed. As a practical matter convenience choices are

useful. We will use xp in our R code to denote the matrix whose rows consist of the x

vectors at which we may need to predict. The most obvious convenience choice is xp = x

where x is the observed training data. A second obvious choice is to randomly partition

the data into a train/test split. This way we are careful to assess our uncertainty on x

cases not used in estimation. For nonparametric methods such as BART, this can make a

difference. Note that our motivation for a train/test split is very different from the usual

motivation based on estimation of out of sample loss.

Let’s use a train/test split with 75% of the data in the training sample.

set.seed(99)

n = length(y)

ii = sample(1:n,floor(.75*n))

xp = x[-ii,] ; yp = y[-ii]

x = x[ii,]; y = y[ii]

print(dim(x)) ; print(length(y))

[1] 750 15

[1] 750

print(dim(xp)) ; print(length(yp))

[1] 250 15

[1] 250

So, (x,y) is the training data and (xp,yp) is the test data.

3 Cars Data, BART Inference for f

In Section 1 we outlined how our approach to variable selection consists of three steps. In

step (1) we obtain an inference for E(Y |x) = f(x).

7

In this section we illustrate the use of Bayesian Additive Regression Trees (BART, Chipman

et al. (2010)) to get inference for f with the cars data as our example (Section 2).

The BART model and Markov Chain Monte Carlo algorithm provide an inference for

Y = f(x) + ε, ε ∼ N(0, σ2),

where we assume that the errors are iid N(0, σ2).

We will use the R package BART(see Sparapani et al. (2020) and McCulloch et al. (2019))

that implements the BART algorithm for the model above (as well as many others.)

We use the function BART::wbart:

library(BART)

set.seed(14)

bf = wbart(x,y,xp,nskip=500,ndpost = 3000) #BART fit

As discussed in Section 2, (x,y) is our a training data and the third argument xp is the set

of x for which we want inference for f(x). nskip=500 initial MCMC iterations will be used

for burn-in and results for the subsequent ndpost=3000 MCMC iterations will be used for

inference.

We can get quick feeling for how the BART model and MCMC performed by plotting the

draws of the parameter σ. The component bf$sigma contains all the σ draws including

burn-in so that there are 500+3000=3,500 draws.

plot(bf$sigma,xlab="MCMC iteration",ylab="sigma draw",pch=16,cex=.4,col="blue")

lmf = lm(y~.,data.frame(x,y)) #linear model fit

abline(h=summary(lmf)$sigma,col="red",lty=2,lwd=3)

abline(v=500,col="black",lty=4,lwd=3)

8

0 500 1000 1500 2000 2500 3000 3500

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

MCMC iteration

si
gm

a
dr

aw

We can see the initial burn-in as the σ draws drop, but it seems to have converged well

before iteration 500. After burn-in, the σ draws vary about a mean of 4.47. The least

squares estimate of σ is 6.499 (plotted with the red horizontal line) which is substantially

larger, suggesting that BART has found some fit missed by the linear model.

Let’s look at the correlations between y and the fitted values from the linear model (lmf

above) and BART (bf above). The component fb$yhat.test.mean averages fd(xi) over

the MCMC draws fd of f evaluated at each xi in the test data (xp above). This gives us

the MCMC estimate of the posterior mean of f(xi) which we use for our fitted values f̂(xi).

yhatlm = predict(lmf,data.frame(xp))

Warning in predict.lm(lmf, data.frame(xp)): prediction from a rank-deficient fit

may be misleading

cor(cbind(y,lmf$fitted.values,bf$yhat.train.mean))

y

y 1.0000000 0.9367010 0.9732643

0.9367010 1.0000000 0.9680446

0.9732643 0.9680446 1.0000000

We see that the the correlation between y and the BART in-sample fits is .97, while it is

9

.94 for the linear fits. (The warning about “fit may be misleading” is because we threw in

all the dummies for each categorical x).

4 Big Tree Fit to the Fit

In this section we illustrate our use of big trees to approximate nonlinear functions. We

use the R library rpart to fit the trees.

library(rpart)

Above we have used BART to estimate a function f̂ such that E(Y |x) ≈ f̂(x). Now we

want to use a big tree to approximate this function. We choose the parameters of the

argument control to rpart::rpart to make sure rpart fits a big tree.

np = length(bf$yhat.test.mean)

minbucket = floor(.5*log(np))

btA = rpart(fhat~.,data=data.frame(xp,fhat=bf$yhat.test.mean),

control = rpart.control(minbucket=minbucket,

minsplit = 2*minbucket,

maxcompete=0,

maxsurrogate=0,xval=0,cp=0))

To see how big the tree is we can look at the number of bottom nodes:

cat("the number of bottom nodes is: ",length(unique(btA$where)))

the number of bottom nodes is: 107

We see that there are 107 bottom nodes.

Now let’s have a look at how well our big tree approximates the function f̂ .

yhatbtA = predict(btA,data.frame(xp)) # big tree approx, all x variables

cor(yhatbtA,bf$yhat.test.mean)

[1] 0.9987708

10

The correlation 0.9987708 suggests that the big tree has done a pretty good job of approx-

imating f̂ .

The basic idea of our method is to see if we can approximate f̂ well using functions that

only use a subset of the variables in x. To quickly see if this is the case, we fit a big tree to

f̂ , but only use a subset of the variables. Let’s use the variables (mileage, year, trim.other).

print(colnames(xp)[c(1,2,6)])

[1] "mileage" "year" "trim.other"

btS = rpart(fhat~.,data=data.frame(xp[,c(1,2,6)],fhat=bf$yhat.test.mean),

control = rpart.control(minbucket=minbucket,

minsplit = 2*minbucket,

maxcompete=0,

maxsurrogate=0,xval=0,cp=0))

print(length(unique(btS$where)))

[1] 108

We have fit a big tree with 108 bottom nodes using only the three variables.

If, the big tree fit with only three variables approximates f̂ well, then we might just use

those three to predict. Let’s compare the approximation using just three variables, the

approximation using all the variables, and f̂ . We’ll look at the correlations and the three

scatter plots using any two of the three.

yhatbtS = predict(btS,data.frame(xp)) #big tree approx, three variables

fmat = cbind(yhatbtS,yhatbtA,bf$yhat.test.mean)

colnames(fmat) = c("yhatbt3x","yhatbtallx","fhat")

cor(fmat)

yhatbt3x yhatbtallx fhat

yhatbt3x 1.0000000 0.9990113 0.9980005

yhatbtallx 0.9990113 1.0000000 0.9987708

fhat 0.9980005 0.9987708 1.0000000

11

pairs(fmat,cex=.5)

yhatbt3x

10
30

50
70

10 20 30 40 50 60 70

10 20 30 40 50 60 70

yhatbtallx

10
30

50
70

10 20 30 40 50 60 70

10
30

50
70

fhat

We can see that the big tree with all the variables does a pretty good job. More interestingly,

the big tree using just three variables does not look bad! Our approach to variable selection

uses simple search strategies which are guided by the big tree approximation.

Again, a big tree does not necessarily work well when fit to data (x, y) because you may over

fit. But, a big tree fit to (x, f̂(x)) may provide us with a quick and simple approximation

to f̂ .

Here is a picture of a big tree!

plot(btS,uniform=TRUE)

12

|

5 Variable Selection for the Cars Data

In Section 1 we outlined how our approach to variable selection consists of three steps. For

step (1), we use the BART fit to the cars data from Section 3.

In Section 5.1 we illustrate step (2) and in Section 5.2 we illustrate step (3), again using

the cars data in each case.

5.1 Cars Data, fit the fit Search for Variable Subsets

In this section we use our variable selection method to find subsets of our 15 x variables

that such that a function depending only on the subset approximates the BART fit well.

The nonlinvarsel package has methods the use (i) forward greedy search, (ii) backwards

elimination, and (iii) all subsets evaluation. For each candidate variable subset, a large

regression tree is fit using the variables in the subset to fit the fit from the BART inference.

All subsets is not viable for a large number of variables.

Let’s try forward greedy search using the function nonlinvarsel::vsf. Recall that bf is

the data structure holding the BART fit from the training data T = (x,y) at the x values

in xp. The vector bf$yhat.test.mean are the fitted values f̂(x) = E(f(x) | T) for x in

the rows of xp.

13

vsfr = vsf(xp,bf$yhat.test.mean)

The returned vsfr list has a plot method and and print method. Let’s look at the plot.

plot(vsfr,cex.axis=.6)

forward variable selection

R
−

sq
ua

re
d

ye
ar

m
ile

ag
e

tr
im

.o
th

er

co
lo

r.W
hi

te

co
lo

r.o
th

er

co
lo

r.B
la

ck

is
O

ne
O

w
ne

r.f

co
lo

r.S
ilv

er

tr
im

.5
50

is
O

ne
O

w
ne

r.t

di
sp

la
ce

m
en

t.4
.6

di
sp

la
ce

m
en

t.5
.5

di
sp

la
ce

m
en

t.o
th

er

tr
im

.4
30

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

The variable names printed out along the x-axis indicate the order in which the variables

come in using the forward greedy search. The y-axis is the square of the correlation (R2)

between a function of the variables included and the BART fit (bf$yhat.test.mean). So,

for example, using only the first three variables (year, mileage, trim.other), we can construct

of a function of these three variables that explains almost 99.6% of the variation in f̂(x)

where the x are all those in xp and f̂ is estimated using BART (posterior mean of f(x)).

Let’s print vsfr. As the variables come in, we will see the R2.

print(vsfr)

year mileage trim.other color.White

0.9378374 0.9927871 0.9960050 0.9971044

14

color.other color.Black isOneOwner.f color.Silver

0.9972945 0.9974533 0.9975371 0.9975456

trim.550 isOneOwner.t displacement.4.6 displacement.5.5

0.9975456 0.9975456 0.9975456 0.9975456

displacement.other trim.430 trim.500

0.9975456 0.9975431 1.0000000

We see that the R2 using the first variable is .94 and .99 using the first two.

Let’s review how the forward greedy search works. The first step of the search tries each

variable in x one at a time. For each variable, we fit a big tree using just that one variable

and f̂(x) as our response for x in xp. We pick the variable which gives us the best fit (as

measured by R2). This gives our first variable which is year in the output above. To get

our next variable, we loop through the remaining variables and fit a big tree to see how

well the resulting pair of variables can fit f̂(x). We then pick the pair that gives us the

best fit. This gives us the pair (year,mileage) in the output above. Continuing in this

manner, we introduce variables one at a time. See Section 4 where we explicitly illustrate

fitting the fit f̂(x) with three variables. Note that the forward search uncovers one variable

subset of each size. There is no notion of how important a variable is on its own.

The function nonlinvarsel::vsf returns a list:

names(vsfr)

[1] "vL" "R2" "vrank" "xnames" "fit"

Of particular interest is the component vL which gives the indices in the columns of xp

corresponding to the variable subsets. The component R2 gives the value R-squared of for

each subset size.

vsfr$vL[[3]]

[1] 2 1 6

colnames(xp)[vsfr$vL[[3]]]

[1] "year" "mileage" "trim.other"

15

vsfr$R2[3]

[1] 0.996005

We see that the subset using three variables corresponds to the variables in columns 2,1,

and 6 of xp. The R-squared value is 0.996 indicating that, using a big tree, we have found

a function of these three variables which fits the unrestricted fit very well.

Now let’s try the backward elimination search using nolinvarsel::vsb. Backward elimi-

nation start with all the variables in and then takes variables out one at a time.

vsbr = vsb(xp,bf$yhat.test.mean)

We can plot and print the results. Let’s have a look at the plot.

plot(vsbr, cex.axis=.5)

backward variable selection

R
−

sq
ua

re
d

ye
ar

m
ile

ag
e

tr
im

.o
th

er

co
lo

r.W
hi

te

co
lo

r.o
th

er

co
lo

r.B
la

ck

is
O

ne
O

w
ne

r.t

co
lo

r.S
ilv

er

di
sp

la
ce

m
en

t.o
th

er

di
sp

la
ce

m
en

t.5
.5

di
sp

la
ce

m
en

t.4
.6

is
O

ne
O

w
ne

r.f

tr
im

.5
50

tr
im

.5
00

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

The results tell us that the first variable thrown out in the backwards elimination is

trim.500 and the last variable left is year. The obvious variables year and mileage

16

work very well, but you may want to consider a variable representing a trim category. The

backwards results are very similar to the forwards results.

We can plot the forwards and backwards search together to check their similarity:

plotfb(vsfr,vsbr)

2 4 6 8 10 12 14

0.
94

0.
96

0.
98

iteration number

R
−

sq
ua

re
d

forwards

backwards

variable susbset search, forward and backward

The results are identical.

Since we only have 15 variables, we can try all possible subsets. However, it takes sub-

stantially more time than the forwards and backwards searches and typically gives similar

results.

vsar = vsa(xp,bf$yhat.test.mean)

Let’s plot the results. Note that since the subsets may not be nested (as in the forward

search) we need the complete set of indices for each group size. Hence we just plot the

subset size on the x-axis.

17

plot(vsar)

all subsets variable selection

number of variables in subset

R
−

sq
ua

re
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.
94

0.
96

0.
98

Let’s print out some information about the subsets found using the components vL and R2.

Let’s look at the R-squared and indices for the subsets of sizes 1-4. Let’s also print the

names of the variables in the subset of size 4.

print(vsar$R2[1:4])

[1] 0.9378374 0.9925319 0.9957444 0.9967292

print(vsar$vL[1:4])

[[1]]

[1] 2

##

[[2]]

[1] 1 2

##

[[3]]

[1] 1 2 6

18

##

[[4]]

[1] 1 2 6 12

print(colnames(xp)[vsar$vL[[4]]])

[1] "mileage" "year" "trim.other" "color.White"

We can use the function nonlinvarsel::plotfba to plot all three searches.

plotfba(vsfr,vsbr,vsar)

2 4 6 8 10 12 14

0.
94

0.
96

0.
98

number of variables

R
−

sq
ua

re
d

forwards

backwards

all

variable susbset search, forward, backward, and all

We see that we obtain the same results we got from the forwards and backwards searches.

In general, it is possible for the searches to find different surrogates γ(xS) with the hope

that γ(xS) ≈ f̂(x) ≈ E(Y | x). From a statistical inference point of view it is important to

remember that we are just seeking a good surrogate in this sense. If does not matter if we

have the exact globally optimal surrogate and there are no tricky multiple-comparison type

inference issues related to our search over different kinds of surrogates. All uncertainty is

base on our step (1) inference. We illustrate this in the next section. If you find a good

surrogate it is of real practical value in an uncomplicated way. And it is just fine if there is

19

a better one out there, or if you find a better one a later date. This conceptual simplicity

driven by what we feel is a more useful specification of the real practical issues is a major

strength of our approach.

5.2 Posterior Uncertainty for the Approximation Error

An advantage of using BART for our function estimation is that we get draws from the

posterior distribution of f rather than just the point estimate f̂ . Using these draws we can

assess the uncertainty about the approximation error for each subset of x variables. This

is step (3).

The component bf$yhat.test stores evaluations fd(xj) for d = 1, 2, . . . , D post burn-in

draws fd of f and each xj in the test data.

dim(bf$yhat.test)

[1] 3000 250

We have 3000 post burn-in draws and 250 x vectors in the test data xp.

We can now assess our uncertainty. We use nonlinvarsel::sumpost.

sp = sumpost(bf$yhat.test,vsfr$fit,bf$yhat.test.mean,distrmse)

nd,n,p: 3000 250 14

The arguments are the draws of f (bf$yhat.test) representing our uncertainty about

the true function, the fits from our candidate subsets (vsfr$fit), the fit using all the

information in x (bf$yhat.test.mean), and a distance metric to measure the difference

between a draw fd and a candidate function. The distance metric used above is RMSE

(root mean squared error).

Drmse(f, γS) =

√√√√ 1

n

n∑
i=1

(f(xi)− γS(xi))2.

The sum is over {xi} in the n rows of xp. Note that any distance may be easily used. We

may also be interested in Drmse(f, γS), the possible error of f̂ .

20

We can use a plot method for the value returned by ‘nonlinvarsel::sumpost“.

For each subset S, the plot method displays the values

Drmse(fd, γS), d = 1, 2, . . . , D.

This is our Monte Carlo estimate of the posterior distribution of the difference between f

and our approximation γS.

plot(sp, diff=FALSE)

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2

3
4

5

The solid dot is the median and the vertical line indicates the 95% posterior interval. The

component distaction of sp stores all the Drmse(fd, f̂S) values.

quantile(sp$distaction[,3],probs=c(.025,.5,.975))

2.5% 50% 97.5%

1.656413 1.922544 2.266700

These three quantiles are what are plotted in the third vertical segment in the plot above.

To assess our approximation error, we need to think about what kind of error matters as

a practical matter. Recall from Section 2 that the median price of a car is 30 (thousand

dollars). We can see that with high posterior probability our error is close to 2 and that

that error is obtained with a subset of size four. For practical purposes, it is very likely

21

that the loss due to approximation error using a subset of size three is negligible. A subset

of size two, using only the simple variables (year, mileage) may be quite acceptable as

a practical matter. This kind of simplifying information is often what practitioners seek.

Another useful way to look at the posterior uncertainty is by looking at the difference,

D(f, γS)−D(f, f̂),

where f̂ uses all of the variables as in our original BART inference.

With diff = TRUE (the default), our call to nonlinvarsel::plot.sumpost plots the pos-

terior distributions of the differences which are are estimated by the Monte Carlo draws

D(fd, γS)−D(fd, f̂), d = 1, 2, . . . , D.

plot(sp, diff=TRUE) #diff = TRUE is the default

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1

2
3

4

Clearly, with high posterior probability, as a practical matter, there is little difference

between using the full subset and the discovered subset of size four. Again, subsets of size

three or two might be acceptable.

Of course, we may want to use a metric other than root mean square error. We repeat the

analysis using the average of the absolute value of the error.

22

spabs = sumpost(bf$yhat.test,vsfr$fit,bf$yhat.test.mean,distabs)

nd,n,p: 3000 250 14

plot(spabs)

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Again, with four variables there is a very small chance of an average error of practical

importance.

Note that in our method, practical significance naturally emerges as the key concept.

5.3 Running BART on Subsets to Obtain Alternative Surrogates

In some examples we have found that the surrogate function found using the big tree

approximation can be improved upon. We typically find that the subsets found using big

tree guided searches are useful even in this case. Given, the subsets we can explore ways of

finding alternative surrogate approximators without having to look at all possible subsets.

An obvious way to look for an alternative is to fit BART to the original data using a given

variable subset. We can speed this up by doing the work in parallel using the R package

doParallel. Of course, this depends on how many cores you have in the machine you are

working with.

23

library(doParallel)

Loading required package: iterators

Loading required package: parallel

registerDoParallel(cores=4)

We now use nonlinvarsel::bartSubs to run BART::wbart using each of the 14 subsets

found with the forward search.

bsubs = bartSubs(x,y,xp,vsfr$vL,nskip=500,ndpost=3000)

dim(bsubs)

[1] 250 14

Each of the 14 columns of bsubs is the fitted values on the test data xp from running

BART on the training data using the subset of variables in vsfr$vL.

Let’s plot the correlation between each of the columns of bsubs and the fitted values

obtained using all of x.

ns = ncol(bsubs)

R2subs = (cor(cbind(bsubs,bf$yhat.test.mean))[1:ns,ns+1])^2

plot(c(1,ns),range(c(R2subs,vsfr$R2)),type="n",xlab="subset size",ylab="R-sqaured")

lines(1:ns,R2subs,col="red",lty=2,lwd=2)

lines(1:ns,vsfr$R2,col="blue",lty=4,lwd=2)

legend("bottomright",legend=c("bart on subs","big tree"),

col=c("red","blue"),lty=c(2,4),lwd=c(3,3),bty="n",seg.len=4)

24

2 4 6 8 10 12 14

0.
94

0.
96

0.
98

1.
00

subset size

R
−

sq
au

re
d

bart on subs
big tree

In this case we see that it appears that the big tree fit has done an excellent job.

In the cars example, the message from the data was quite clear and all three searches gave

the same result. In addition the big tree surrogates seem to be quite successful. In some

example these simple results may not hold. It is possible to get different answers from

forwards and backwards search and sometimes we find that we can improve on our big

tree fits. However, we almost always find that the big tree guided search delivers subsets

which are useful. Again, note that our inference is note dependent on finding the optimal

solution.

5.4 Out of Sample Performance

In general, as discussed in section 2 there is no need to obtain xp from a train/test split

of the original data. We commonly use the simple xp=x, that is, xp is all the data. Given

that we did use a train/test split, let’s look at the out of sample performance.

First compute the out of sample root means squared error (RMSE) for both the big tree

surrogates and the BART fit on subsets surrogates.

25

rmsef = function(y,yhat) { return(sqrt(mean((y-yhat)^2)))}

ns = ncol(bsubs)

ebt = rep(0,ns) # big tree oos rmse

ebs = rep(0,ns) # bart subs oos rmse

for(i in 1:ns) {

ebt[i] = rmsef(yp,vsfr$fit[,i])

ebs[i] = rmsef(yp,bsubs[,i])

}

Now we plot the (RMSE) versus subset size.

plot(c(1,ns),range(c(ebt,ebs)),type="n",xlab="subset size",ylab="oos rmse")

lines(1:ns,ebt,col="blue",lty=4,lwd=2)

lines(1:ns,ebs,col="red",lty=2,lwd=2)

legend("topright",legend=c("bart on subs","big tree"),

col=c("red","blue"),lty=c(2,4),lwd=c(3,3),bty="n",seg.len=4)

2 4 6 8 10 12 14

4.
5

5.
0

5.
5

6.
0

6.
5

subset size

oo
s

rm
se

bart on subs
big tree

The

out of sample performance indicates that our subsets of size three or four (or even two)

are quite adequate as a practical matter. This is consistent with our posterior analysis

26

is Section 5.2. But let’s review how tricky this kind of train/test analysis really is. We

just did one train test split and just have 250 test y values. We could do 5 of 10 fold

cross-validation but then we just have 5 or 10 draws of our training data. These are real

practical concerns. Witness the time honored “1se” rule which is clearly at compromise at

best. While there cannot be a guarantee that the BART draws have fully expressed our

uncertainty, the simplicity or our approach seem appealing.

6 Simulated Data

In this section we simulate data using the commonly used simulation setup originally pro-

posed by Friedman (1991). There are 10 variables in x, but only the first 5 are in the true

function. The function is nonlinear in the first three x variables. Each x is iid uniform on

(0, 1) .

We simulate the data:

the Friedman function

f = function(x){

10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]

}

training data

set.seed(99)

sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)

n = 100 #number of observations

p = 10

x = matrix(runif(n*p),n,p)

colnames(x)=paste0("x",1:p)

Ey = f(x)

y = Ey+sigma*rnorm(n)

27

So,

Y = 10 sin(π x1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + ε, ε ∼ N(0, 1)

We next simulate the x values that we want to be able to predict at and store them in

xp as in the car price example. In this example the simulated training data only has

100 observations. We will simulate a richer set of x values so that when we compare

predictions we fully consider the kinds of predictions we might want to be able to make in

the future. Here is a place where our approach differs fundamentally from many commonly

used methods. Since we consider the practical implications of our model, it matters what

we intend to do with it.

set.seed(99)

np = 5000 #number of observations for prediction

p = 10

xp = matrix(runif(np*p),np,p)

colnames(xp)=paste0("x",1:p)

We now run BART to obtain our step (1) inference.

burn = 1000; nd = 6000

first BART run

set.seed(99)

bff = wbart(x,y,xp,nskip=burn,ndpost = nd)

Let’s try the backward search.

vsbrf = vsb(xp, bff$yhat.test.mean)

Now we plot and print the results.

plot(vsbrf)

28

backward variable selection
R

−
sq

ua
re

d

x4 x1 x2 x5 x3 x7 x6 x9 x8

0.
65

0.
75

0.
85

0.
95

print(vsbrf)

x4 x1 x2 x5 x3 x7 x6 x9

0.6192673 0.8023019 0.9137632 0.9516807 0.9749607 0.9761311 0.9768612 0.9774760

x8 x10

0.9779176 1.0000000

The backward search indicates that we can predict just as well using only the first five

variables as we can using all of them. Each of the five variables xi, i = 1, 2, 3, 4, 5 seems to

help appreciably. Note that in the car price example, the units of y meant something to us

but here they do not. Consequently, we cannot make statements like as a practical matter,

x3 (the first of the first 5 to go out) is not that important given the first four.

Let’s try forward search and all possible subsets. Since we only have 10 variables, just

trying all possible subsets is feasible.

vsfrf = vsf(xp, bff$yhat.test.mean)

vsarf = vsa(xp,bff$yhat.test.mean)

We can compare the three searches by plotting them all together using nonlinvarsel::plotfba.

29

plotfba(vsfrf, vsbrf, vsarf)

2 4 6 8

0.
65

0.
75

0.
85

0.
95

number of variables

R
−

sq
ua

re
d

forwards

backwards

all

variable susbset search, forward, backward, and all

We see that the three searches give the same results.

Now let’s look at the uncertainty in our approximation error.

sp = sumpost(bff$yhat.test,vsfrf$fit,bff$yhat.test.mean,distrmse)

nd,n,p: 6000 5000 9

plot(sp)

30

actions

di
st

an
ce

1 2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

2.
0

We have strong evidence that only the first 5 variables are needed.

As an exercise, let’s see what would happen if we just used the 100 sample x values for xp.

Our idea was that this may not be enough because 100 vectors in R10 can’t capture the set

of possible predictions we may want to make.

We don’t have to rerun BART, we can just use the train components instead of the test

components.

vsfrfS = vsf(x,bff$yhat.train.mean) # forward using the train x, S for Small xp set.

plot(vsfrfS)

31

forward variable selection
R

−
sq

ua
re

d

x2 x4 x1 x3 x6 x8 x1
0 x9 x7

0.
80

0.
85

0.
90

0.
95

Now we do not how a strong indication that you need to use x5 as it comes in last. We do

not describe this answer as “wrong”. Rather, given your posterior beliefs about f , if you

just have to predict at those 100 x values, you don’t need to know x5.

7 The Hockey Penalty Data

In this section we illustrate the method on hockey penalty data (see Abrevaya & McCulloch

(2014)). Note that in this section we simply present the results without providing the R

code.

Data was collected on each penalty in each National Hockey League (NHL) game from

1996 to 2001. The goal is to predict which team will get the next penalty for each penalty

in a game after the first penalty. The total number of observations is 57,883. The response

y is coded as indicating whether there is a “reverse call”, that is, the current penalty is not

on the same team as the previous penalty. About 60% of the time the penalty is a reverse

call.

The variables in x seek to capture things about the game at the time of the penalty and

characteristics of the two teams that are playing the game. There are a total of p = 26

32

variables in x. See Abrevaya & McCulloch (2014) for a full description of the variables.

Key variables record such things as whether the last two penalties were on the same team,

the score in the game at the time of the penalty, and the time since the last penalty.

Abrevaya & McCulloch (2014) split the data into 47,883 training observations and 10,000

out of sample test observations. The models were again estimated using a version of BART

appropriate for a binary outcome using the training data.

In this section our response y is binary. In order to keep the exposition simple in Section

1 we focused on a numeric y and the corresponding prediction mechanism E(Y | x). In

this section our focus is on P (Y = 1 | x) where Y = 1 indicates that the penalty is a

reverse call. Of course, for a Bernoulli Y , we do have P (Y = 1 | x) = E(Y | x) but we

think about it differently. In particular, we consider different kinds of loss functions when

evaluating our uncertainty in step (3). While we emphasize that the best choice of loss is

application driven, it is useful to have generic loss function. In this application we will use

the Kullback-Leibler divergence. Recall that if Y ∈ {0, 1} and P is the distribution such

that P (Y = 1) = p and Q is such that P (Y = 1) = q, then the Kullback-Leibler divergence

between P and Q is

K(P,Q) = EP (P (y)/Q(y)) = p log(p/q) + (1− p) log((1− p)/(1− q)) ≡ k(p, q).

A BART fit gives us a function such that f̂(x) ≈ P (Y = 1 | x) and again we can use large

regression trees to search for surrogates such that γS(x) ≈ f̂(x). For our step (3) loss we

use

D(f, γS) = 2
1

n

n∑
i=1

k(f(xi), γS(xi)).

This is twice the average Kullback-Leibler divergence between the Bernoulli Y ∼ Bernoulli(f(x))

and the Bernoulli Y ∼ Bernoulli(γS(x)). It is common (but not necessary) to double the

KL distance to make it more comparable to the deviance used below.

We used the forward search to uncover good subsets. The step (3) posterior uncertainty of

the approximation error is in Figure 1. We use the default option which reports the posterior

of D(f, γS)−D(f, f̂). We see a strong indication the only about 12 of the 26 variables are

33

needed. The first six variables are inrow2, home1, numpen, timebetpens, goaldiff1, pf1,

and pf2, where, for example, inrow2 indicates whether the last two penalties were on the

same time and goaldiff1 indicates the lead of the last penalized team.

subset size

di
ffe

re
nc

e
in

 K
ul

lb
ac

k
Li

eb
le

r

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25

0.
00

0.
01

0.
02

0.
03

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ●

● ● ● ● ● ● ●
●

Figure 1: Posterior summary for the hockey penalty data.

Figure 2 presents the out-of-sample loss on the 10,000 test observations as measured by

the deviance for BART models estimated using the training data and the variable subsets

discovered by our method as in Section 5.3. The out-of-sample performance corresponds

very closely to posterior inference for the approximation error.

At the same time we emphasize that our assessment of posterior uncertainty in 1 is a

fundamentally different thing from the out-of-sample error estimation in 2. In application,

the information provided by the posterior uncertainty may be a key component of the

variable selection and is not available in train/test estimation of out of sample loss.

34

●
●

●

●

●

●
●

●

●

●

●
●

●
● ●

● ●
● ●

●
●

●
●

●
● ●

0 5 10 15 20 25

13
20

0
13

25
0

13
30

0
13

35
0

13
40

0
13

45
0

number of variables

ou
t o

f s
am

pl
e

de
vi

an
ce

 lo
ss

Figure 2: Out of sample performance for the hockey penalty data.

35

8 Conclusion

The is paper provide and intuitive introduction to the approach for variable selection for

nonlinear models presented in CHM. CHM provide a Bayesian decision theoretic motivation

for the approach. Here we informally emphasis that as a matter of practical significance

we seek variable subsets that provide the same amount of information about the response

as the full set of variables.

We also provide a tutorial introduction to the R package nonlinvarsel which implements

the approach.

Our examples have used BART for our step (1) inference. We have also successfully used

deep neural nets for step (1) and supplied the f̂ from the neural net fit to step (2).

Our approach to Bayesian variable selection differs fundamentally from the approaches

most commonly developed in the literature. The usual approach injects prior beliefs that

many of the variables in x don’t matter and then computes the posterior. Such beliefs often

take the form of a “sparsity prior” which, one way or another, expresses beliefs that only a

subset of the variables are related to the response in any way. The effect of most variables

on Y is exactly zero. In the examples in this paper, our BART inference has no prior

guidance to seek sparsity. We obtain simple models by looking for simple approximations

to our unconstrained inference. We look for variables which, has a practical matter are

not important, without having to believe they are completely unrelated to Y . Our variable

selection is driven by the utility: as a practical matter it is useful to find simple models.

The usual approach is driven more by the prior: we believe that the truth is a simple

structure and engineer our prior to seek it.

Of course, we could use a step (1) inference that incorporated a sparsity prior. See Linero

(2018) for a development of BART which includes a sparsity prior. But our experience

suggests that keeping the prior part of the model simple greatly simplifies the process and

consequently gives good results with relatively little input from the user. Our step (3)

inference tells us what we want. We can readily see which variables are likely to be of

little practical use where “likely” refers to the full Bayesian posterior from step (1). Our

relatively simple search mechanisms typically find very useful subsets without having to

36

worry about whether we have successfully inferred “the truth”. The usual approach based

on prior beliefs entails difficult issues surrounding the specification of the prior and the

computation of the posterior which we entirely avoid.

References

Abrevaya, J. & McCulloch, R. (2014), ‘Reversal of fortune: A statistical analysis of

penalty calls in the national hockey league’, Journal of Quantitative Analysis in Sports

10(2), 207–224.

Carvalho, C., Hahn, P. & McCulloch, R. (2020), ‘Fitting the fit, variable selection using

surrogate models and decision analysis’.

Chipman, H., George, E. & McCulloch, R. (2010), ‘Bart: Bayesian additive regression

trees’, The Annals of Applied Statistics 4(1), 266–298.

Friedman, J. H. (1991), ‘Multivariate adaptive regression splines (Disc: P67-141)’, The

Annals of Statistics 19, 1–67.

Hahn, P. R. & Carvalho, C. M. (2015), ‘Decoupling shrinkage and selection in bayesian

linear models: a posterior summary perspective’, Journal of the American Statistical

Association 110(509), 435–448.

Hahn, P. R. & He, J. (2020), ‘Stochastic tree ensemblesfor regularized nonlinear regression’.

Linero, A. (2018), ‘Bayesian regression trees for high dimensional prediction and variable

selection’, Journal of the American Statistical Association 113(522), 626–36.

McCulloch, R., Sparapani, R., Gramacy, R., Spanbauer, C. & Pratola, M. (2019), BART:

Bayesian Additive Regression Trees. R package version 2.7.

URL: https://CRAN.R-project.org/package=BART

Sparapani, R., Spanbauer, C. & McCulloch, R. (2020), ‘Nonparametric machine learning

and efficient computation with bayesian additive regression trees: the bart r package’,

Journal of Statistical Software (in press), 1–71.

37

	Introduction
	The Cars Data
	Cars Data, BART Inference for f
	Big Tree Fit to the Fit
	Variable Selection for the Cars Data
	Cars Data, fit the fit Search for Variable Subsets
	Posterior Uncertainty for the Approximation Error
	Running BART on Subsets to Obtain Alternative Surrogates
	Out of Sample Performance

	Simulated Data
	The Hockey Penalty Data
	Conclusion

