
 
Bayesian Modelling of Catch in a North-West Atlantic Fishery
Author(s): Carmen Fernández, Eduardo Ley and  Mark F. J. Steel
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 51, No. 3
(2002), pp. 257-280
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/3592652
Accessed: 12-12-2016 23:50 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/3592652?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Wiley, Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to
Journal of the Royal Statistical Society. Series C (Applied Statistics)

This content downloaded from 129.219.247.33 on Mon, 12 Dec 2016 23:50:26 UTC
All use subject to http://about.jstor.org/terms



 Appl. Statist. (2002)
 51, Part 3, pp. 257-280

 Bayesian modelling of catch in a north-west Atlantic
 fishery

 Carmen Fernandez,

 University of St Andrews, UK

 Eduardo Ley

 International Monetary Fund Institute, Washington DC, USA

 and Mark F J. Steel

 University of Kent at Canterbury, UK

 [Received March 2000. Final revision December 2001]

 Summary. We model daily catches of fishing boats in the Grand Bank fishing grounds. We
 use data on catches per species for a number of vessels collected by the European Union in
 the context of the Northwest Atlantic Fisheries Organization. Many variables can be thought
 to influence the amount caught: a number of ship characteristics (such as the size of the ship,
 the fishing technique used and the mesh size of the nets) are obvious candidates, but one can
 also consider the season or the actual location of the catch. Our database leads to 28 possible
 regressors (arising from six continuous variables and four categorical variables, whose 22 levels
 are treated separately), resulting in a set of 177 million possible linear regression models for
 the log-catch. Zero observations are modelled separately through a probit model. Inference is
 based on Bayesian model averaging, using a Markov chain Monte Carlo approach. Particular
 attention is paid to the prediction of catches for single and aggregated ships.

 Keywords: Bayesian model averaging; Categorical variables; Grand Bank fishery; Predictive
 inference; Probit model

 1. Introduction

 The mismanagement of the world's fisheries is one of the most important global environmental
 problems that we face today. Nine of the world's 17 major fisheries are in serious decline, and
 four others are classified as 'commercially depleted' by the Food and Agricultural Organization
 of the United Nations (Tibbets, 1994).

 The Northwest Atlantic Fisheries Organization is one of several international organizations
 that tries to alleviate overexploitation through voluntary co-operation. It was established in
 1978 to contribute to the optimal exploitation and rational use of fisheries resources in the
 Grand Bank outside Canada's exclusive economic zone (see http:/ /www. nafo. ca for a
 map of the area covered by the treaty). Countries which are members of the Northwest At-
 lantic Fisheries Organization assign quotas among themselves and grant inspection rights to
 each other. Three inspection ships-two Canadian and one belonging to the European Union-
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 board vessels of member states and register the information in their log-books. In addition,
 ships from signatory countries report (through the so-called 'hails') their entry to and exit of
 the various zones of the fishing grounds. Finally, two daily flights over the Grand Bank and
 the Flemish Cap are made by inspection airplanes with the purpose of locating and identifying
 all ships fishing in the area. Boarding ships on high seas to verify catches is expensive and
 disrupts their operations. Furthermore, ships from non-signatory countries cannot be inspected.
 It then becomes important to construct models that allow for the prediction and monitoring
 of catches conditional on the information from aerial sightings and hails, ship characteristics
 and other variables (such as the month of the year). Thus, our aim is to model how all these
 variables influence the catch. This could provide useful information for regulatory measures
 and guidelines related to issues like mesh size and optimal size of the fleet. More importantly,
 it allows an estimate of the total amount caught by a group of ships operating in a certain area
 at a certain time of the year.

 The data that we have consist of the daily catch (per ship) per species of fish. Since there
 are many days with zero catch for a given species of fish, our statistical model incorporates a
 positive probability of zero catch through a probit model. When a catch occurs, the logarithm
 of the quantity caught is modelled through a linear regression structure, where we formally
 treat the uncertainty concerning the choice of regressors through model averaging in a Bayesian
 setting using posterior model probabilities as weights. In view of the large number of potential
 models, we explore the posterior distribution by using Markov chain Monte Carlo sampling
 over the model space in the spirit of the 'MC3' methodology of Madigan and York (1995).
 The Bayesian framework leads to exact small sample results, fully taking both parameter and
 model uncertainty into account. In the present application we have not used any strong prior
 information or a formal decision theory framework. Both of these can, however, easily be
 incorporated into a Bayesian analysis.

 The aims of this paper are quite different from those of the large literature in stock assessment,
 where statistical methods are used to assess the size of fish stocks; see, for example, Hilborn and
 Walters (1992) for a general introduction and McAllister and Kirkwood (1998) for an overview
 of Bayesian stock assessment methods. A variety of statistical methods, such as Bayesian state
 space models (Millar and Meyer, 2000) and spatial methods (Newman, 1998), has recently been
 introduced into this literature. There is, in addition, substantial work on the estimation of year
 effects and abundance trends based on modelling the catch per hour fished; Quinn and Deriso
 (1999) have provided many examples. In contrast with these, and like Ferreira and Tusell (1996),
 our aim is to shed light on how the catch can be explained by certain observable characteristics-
 such as mesh size (Robichaud et al., 1999)-and to provide operational forecasts of commercial
 landings of various species (Stergiou et al., 1997). It is important to stress that the main aim
 of our analysis is not necessarily to develop a model that describes the dynamics of fisheries as
 closely as possible, but rather to provide a framework that can successfully be used for short-
 term predictions of quantities caught (of a certain species by a certain ship or group of ships)
 given an easily available information set. This will guide the modelling strategy and the choice
 of covariates that we shall consider.

 Section 2 describes the data, whereas Section 3 introduces the statistical model. The zero
 observations are treated in Section 4, and the analysis of positive catches is discussed in Section
 5. Section 6 focuses on prediction. The empirical results are presented in Section 7 and a final
 section concludes. Details of the computational implementation are presented in Appendix A.
 The data and program that was used to analyse them can be obtained from

 http://www.blackwellpublishers.co.uk/rss/
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 Bayesian Modelling of Catch 259

 2. The data

 The original data were gathered by the inspection vessel of the European Union operating on
 the Grand Bank fishery. Inspectors board the fishing boats and record basic characteristics of
 the ship and the fishing equipment, as well as the quantities caught of different species and where
 and when this catch was effectuated. They use the ship's log-books to collect all the information
 accumulated since the last time that the ship was boarded. All data correspond to 1993 and
 the first half of 1994, leading to 6806 observations each corresponding to a particular ship at a
 given day. In all, there are 59 different ships.

 The dependent variable is the live-weight of fish caught. Table 1 summarizes the regressors
 that we consider using. These include four categorical variables: the year when the catch is
 made (two levels), fishing technique (four levels), zone or division within the fishing grounds
 (four levels) and month of the year (12 levels). In addition, we have four continuous variables
 (Table 2), namely mesh size measured in millimetres, length of vessel measured in metres, gross
 registered tonnage (GRT) and engine power in kilowatts. See for example King (1995), chapter
 2, for a description of fishing gear and methods.

 Our data set also provides the nationality of the ship but we have decided not to consider
 this variable since one of the purposes of the analysis is to predict the catch of ships from non-
 signatory countries (for which we have no observations). However, we do have a year effect.
 This is because year class effects are important in fisheries and, from a biological point of view,

 Table 1. Data statistics

 Regressor % observations

 1, year 1993 75.36
 2, year 1994 24.64
 3, drift gill net 3.60
 4, anchored gill net 1.44
 5, otter trawl 79.64
 6, otter trawl pair 15.32
 7, zone 3L 34.64
 8, zone 3M 25.69
 9, zone 3N 35.05
 10, zone 30 4.62
 11, January 4.89
 12, February 10.74
 13, March 15.05
 14, April 12.06
 15, May 13.99
 16, June 9.48
 17, July 7.02
 18, August 7.71
 19, September 7.98
 20, October 7.04
 21, November 3.48
 22, December 0.56
 23, gill net x log{0.5 + mesh size - min(mesh size)}
 24, gill net x log{0.5 + mesh size - min(mesh size)}2
 25, trawl x log{0.5 + mesh size - min(mesh size)}
 26, trawl x log{0.5 + engine power - min(engine power)}
 27, log(length of vessel)
 28, log(GRT)
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 Table 2. Values of the continuous variables

 Variable Minimum 1st quartile Median 3rd quartile Maximum

 Mesh size (mm), gill netters 110 130 140 140 150
 Mesh size (mm), trawlers 120 120 120 130 150
 Engine power (kW), trawlers 588 845 1164 1470 2648
 Length of vessel (m) 29.0 42.0 47.0 61.2 84.9
 GRT 252.3 376.9 664.9 970.2 2382.0

 it would not be sensible to assume equality of catches in, for example, May 1993 and May 1994.
 Inevitably, this complicates predictions for years for which no data are available.
 The way that mesh size and engine power influence the catch is potentially very differ-
 ent for gill nets and otter trawls. Thus, we include these variables in terms of interactions
 with an indicator variable for the net type used: gill nets (adding drift and anchored) and
 trawls (both single and paired). In addition, there is prior reason to assume that the effect
 of mesh size might be non-linear for gill nets (for example, the catch would decrease if the
 mesh size were either too large or too small), so we include a quadratic interaction term for
 this fishing technique. An effect of engine power on the quantity caught is quite plausible for
 otter trawls (which are towed) but is very unlikely for gill nets (which are passive), so we do
 not include an interaction term for engine power and gill nets. To reduce the collinearity be-
 tween these interaction terms and fishing techniques, the continuous variables power and mesh
 size are transformed as indicated in Table 1. This substantially increases the spread of the
 interaction variables and reduces the collinearity in the design matrix. The other continu-
 ous variables (length of the vessel and tonnage) are transformed to logarithms in the usual
 way.

 Table 1 indicates the empirical distribution of each of the categorical variables, and Table
 2 indicates quantiles of the continuous variables (before transformation). Of course, Tables
 1 and 2 provide only marginal information. Some complementary information is given in
 Fig. 1, where we present bivariate histograms (with lighter shades corresponding to higher
 relative frequencies) of some combinations of regressors for each of the years in the sam-
 ple. Levels for the categorical variables are ordered as in Table 1 and continuous variables
 are categorized into five bins of equal width. From this we note a shift in 1993 from zone
 L in the period January-May to zone N for the remaining months of the year. The avail-
 able months of 1994 show a somewhat more even spread over zones L, M and N. The month
 versus mesh size plots are presented for gill nets and trawls separately, which show that trawlers
 tend to use smaller meshes than gill netters. We also see a tendency towards the greater use
 of small mesh trawl nets (often 120 mm) in the months April-June 1993. Finally, the length
 and GRT of the ships are obviously positively correlated as can be seen from the last row of
 plots.

 Table 3 lists the five most important species caught in the Grand Bank and has one category
 for all the other species ('rest'). Every time that we observe a ship, we observe its daily catches
 for all six species. A look at the data tells us that a ship's catch on any given day often does not
 include all species. In particular, we shall model the first five species listed in Table 3, for which
 the percentage of zeros in the data (6806 ship-days) ranges from 18.50% (halibut) to 88.33%
 (cod). Thus, this is an important aspect, which, if overlooked, would lead to a substantial
 overestimation of the catch. Hence, we shall model zero catches explicitly, by means of a probit
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 Fig. 1. Bivariate grey scale plots for regressors (lighter shades correspond to higher relative frequencies)

 Table 3. Catch for various fish species

 Species Description Mean (kg) Standard 0% zeros % of catch
 deviation (kg)

 1 Atlantic cod (Gadus morhua) 550.20 2517.48 88.33 9.80
 2 Greenland halibut (Reinhardtius 3503.48 3610.55 18.50 62.40

 hippoglossoides)
 3 Redfish (Sebastes sp.) 658.51 2794.49 85.73 11.73
 4 Roundnose grenadier 213.46 502.18 43.20 3.80

 (Coryphaenoides rupestris)
 5 Skate (Raja sp.) 503.39 1661.50 55.44 8.97
 6 Rest 185.23 625.76 72.27 3.30

 model. This feature of the data was not accounted for by Ferreira and Tusell (1996), who
 analysed the same data set but took only the positive observations into account. Table 3 also
 lists the fraction of the total live-weight that each species constitutes. We shall consider separate
 models for each of the species, to allow for the explanatory variables to affect the catch for each
 species differently.
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 3. The statistical model

 In this section we outline our statistical model for the daily catch of a given species of fish per ship.
 The observations will be denoted by si, i = 1,..., n (n = 6806), and we define s = (si,...,sn)'.
 Clearly, each of the n observations is non-negative, and a certain number of them, say Q, are
 strictly positive (those that correspond to a positive catch). For notational convenience, we shall
 order the observations so that the first Q observations are positive, whereas the remaining n - Q
 observations are equal to 0.

 As explained in the previous section, it is crucial to take account of the fact that there is a
 positive probability of zero catch. A natural approach is to use the probit model

 si = 0 with probability (x7-),
 si > 0 with probability 1 - D(x-y),

 where i(.) denotes the cumulative distribution function of the standard normal distribution,
 the vector xi E 21+k contains the element 1 as well as the explanatory variables presented in
 Table 1, and - e 91+k groups the parameters. Each categorical variable is handled through
 dummy variables taking the values 0 or 1, with one level excluded (thus, k is equal to 24 instead
 of 28). Throughout the paper, the design matrix X = (xl,..., xn)' will be of full column rank.

 If si > 0, we further assume a linear regression structure for yi = log(si). This is easier to
 handle than the probit model, so a more ambitious strategy is feasible. In particular, we shall
 allow for model uncertainty, where each of the potential models considered will assume that

 Yi = log(si) is distributed as normal(a + zi3, a2), i = 1 ..... Q, (3.2)
 and the vector zi corresponds to a subset of the regressors in Table 1. For computational conve-
 nience, all the variables are now demeaned, so that each column of the resulting design matrix
 Z = (zl1..., zQ)' sums to 0. The matrix Z is also of full column rank. In the generic model
 (3.2), a e ti is the intercept and a2 > 0 denotes the sampling variance, whereas the vector P
 groups the regression coefficients.

 Note that models (3.1) and (3.2) have been defined entirely separately, using different
 parameters, and we shall also assume prior independence between the parameters in mod-
 els (3.1) and (3.2). This is done partly for pragmatic reasons (as in this case we can conduct
 posterior inference independently, greatly simplifying the computations), but also because it is
 not obvious to us that the effects of a given variable on the probability of zero catch and on the
 actual amount caught (when the catch is positive) should be linked. We might possibly consider

 sign restrictions for the elements of - in model (3.1) and / in the generic model (3.2). For ex-
 ample, for otter trawls, increasing mesh size could be expected to decrease the amount caught
 and to increase the probability of zero catch: this would imply a negative component in 0 and
 a positive component in -, but it would not mean that their actual magnitudes are necessarily
 linked. Thus, such restrictions would not imply that both models should be analysed jointly.
 Here we have chosen not to impose prior constraints like these, and we shall instead let the data
 find the most appropriate parameter ranges. As we do not have strong prior information, our
 prior distribution (presented in the following two sections) will generally try to incorporate as
 little subjective input as possible.

 We shall use the entire sample to make inference on 7 and to predict the probability of zero
 versus positive catch; this analysis only uses the fact whether si is 0 or strictly positive. The

 actual value of the Q positive observations will be used to conduct inference on a, p/3 and a, and
 to predict the amount of catch given that it is positive. The probit model will be examined in

 Section 4, whereas Section 5 will be devoted to the model for positive catch. Lo et al. (1992) also
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 modelled zero observations separately from positive observations in the context of analysing
 relative fish abundance, using classical statistical procedures and a simple linear probability
 model for zero observations.

 4. Analysis of zero observations

 In this section, we focus on posterior inference on y, the parameter in the probit model (3.1).
 We shall complement this sampling distribution with the prior

 P() = fl+k{7l0, (hoX'X)-}, (4.1)
 i.e. a (1 + k)-variate normal distribution with zero mean and covariance matrix (hoX'X)- , where
 ho > 0. This corresponds to the g-prior introduced in Zellner (1986) and essentially says that the
 prior precision is a fraction ho of that of the sample. This prior is often used for relatively high
 dimensional parameters in the context of a lack of strong prior information, as it typically does
 not distort the information in the sample. We took 0 as the prior mean for y, since, from model

 (3.1), P(si = 0jy = 0) = 1. For h0 we adopt the value h0 = l/n, which roughly corresponds
 to the information in one observation and will easily be dominated in posterior and predictive
 inference. With the prior in equation (4.1) the predictive distribution is invariant with respect
 to the choice of the reference levels for the categorical variables, as is desirable.

 Although the posterior distribution corresponding to a sample of n observations from model
 (3.1) and the prior in equation (4.1) cannot be computed analytically, we can use Gibbs sampling
 (with data augmentation) to approximate p(-ys) to any required precision (see Appendix A. 1
 for details, and Albert and Chib (1993) for a similar probit analysis).

 5. Analysis for positive observations

 5. 1. Model specification
 We shall incorporate model uncertainty in the sense that we allow for any subset of the variables
 in Table 1 to appear as regressors in the generic model (3.2). This means that instead of a single

 model we have a set M = {Mj: j = 1,..., J}, where each model corresponds to a particular
 choice of regressors.

 To understand our model space AM fully, we need to explain carefully how we deal with
 categorical variables in this situation. We shall treat different levels of a categorical variable
 separately, so that a model in M can include or exclude any level with the only restriction that not
 all levels of a categorical variable can be included in the same model. This gives us extra flexibility
 with respect to the simpler approach that treats categorical variables as single entities which can
 only be fully excluded (which means that all levels have exactly the same effect) or included (which
 implies that all levels have different effects). With our treatment, we also allow for intermediate
 situations where several levels of a variable have the same effect (and are, therefore, excluded from
 the model) whereas other levels (those included in the model) have different effects. This is an
 issue of empirical relevance as the results in Section 7 will illustrate. Our approach implies that we
 cannot fix a reference level, as we want to treat all levels in a symmetric fashion. As an example,
 consider the categorical variable month of the year, which has 12 levels. If we were to designate,
 say, December as a reference level we would be able to capture a situation where, for example,
 January has the same effect as December (by also excluding January), but not a situation where
 January has the same effect as, say, February, yet not the same as December. By allowing a free
 reference level, we can accommodate any combination of levels having the same effect.
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 With K continuous variables and R categorical variables with L1, L2,..., LR levels, this
 strategy implies a model space M with

 R

 J = 2K H1 (2Lr _ 1)
 r=1

 elements, which for our application leaves us with 176904000 possible models. We stress that,
 whereas all the k = 28 variables in Table 1 will appear in some of the models, the maximum
 number of regressors that any single model can contain is k = 28 - 4 = 24 (since there are four
 categorical variables). Whenever a model contains all except one levels of a categorical variable,
 we say that the model is 'full' in that categorical variable. Note that models that are full in one

 or several categorical variables appear with different representations in M4, each corresponding
 to a particular choice of reference level. This feature will be taken into account when setting a
 prior distribution for the models.

 5.2. Priors under different models

 We now turn to the issue of eliciting priors for the parameters in expression (3.2) given a
 particular model Mj. For these parameters we specify a prior distribution that incorporates
 minimal prior information while leading to analytical tractability. On the intercept a and the
 scale parameter a, which are present in all the models, we assume the usual non-informative
 distributions, respectively defined through

 p(a)0 oc 1,
 S1, (5.1) p(a) o a--1

 For the vector P(j), which groups the relevant regression coefficients under model Mj, we assume
 the g-type prior

 p(3(1)Ir, Mj) = f?i{/(j) 0, U2(g90ZZY)l}, (5.2)
 where kj is the number of explanatory variables included in Mj and Zj denotes the corresponding
 design matrix. This prior specification requires minimal judgmental input from the user, since
 only the scalar go is left to be chosen. We shall take go = 1/ max(Q, k2), where Q is the number
 of positive observations and k is the number of available regressors in Table 1. This choice is
 inspired by Fernandez et al. (2001 la), who found that the use of such a strategy for go leads to very
 satisfactory identification of the correct model in simulation exercises, whereas the out-of-sample
 predictive behaviour is also quite good. Besides their empirical simulation justification, they also
 derived some theoretical properties of this prior. Finally, model Mj assumes that its excluded
 explanatory variables do not matter, i.e. that their associated regression coefficients are equal
 to 0. Now that we have specified the prior distribution, we can immediately conduct Bayesian
 inference under model Mj, by combining this distribution with the corresponding sampling
 model from expression (3.2). Since this prior distribution resembles a natural conjugate prior,
 computing the posterior and predictive distributions is quite simple, as will be explained later
 in the paper.

 5.3. Model averaging
 So far we have considered a single model Mj from the space of all possible models M. From a
 Bayesian perspective, model uncertainty can be treated in a coherent fashion by further speci-

 fying a prior distribution P(Mj) on the models. Here we shall consider a uniform distribution
 on the space of genuinely different models. By this we mean that we take into account that M/
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 contains multiple copies of models which are full in some categorical variable, downweighting
 their prior probabilities accordingly. If desired, other prior distributions could be considered
 with only minor modifications to our framework.

 The posterior distribution of a quantity is now given by a mixture of the posterior distribu-
 tions under each of the models, with mixing probabilities corresponding to the posterior model
 probabilities. Thus, Bayesian inference provides a coherent framework for treating model un-
 certainty, leading to an inferential procedure which averages over the inferences resulting from

 each of the individual models. Madigan and Raftery (1994), Raftery et al. (1997) and Fernafndez
 et al. (2001b) found in a series of empirical applications that, in the presence of model uncer-
 tainty, Bayesian model averaging leads to the best predictive performance, as measured by a
 logarithmic scoring rule. In a decision theory context, mixing over models can be shown to be
 optimal under predictive squared error loss, provided that the set of models considered is ex-
 haustive (Min and Zellner, 1993). We follow this approach and consider model averaging rather
 than selecting one single model.

 Applying the Bayes theorem, the posterior probability of model Mj is given by

 P(MjIy) oc ly(Mj) P(Mj), (5.3)

 where P(Mj) is the prior probability and ly(Mj) the marginal likelihood of model Mj. The latter
 is obtained from expression (3.2), integrating out the parameters with their prior distribution
 described in Section 5.2. It is easy to show that ly(Mj) is finite if and only if the sample y =

 (yl,...., yQ)' contains at least two different observations. This condition will be both necessary and sufficient for posterior and predictive inference throughout the paper.
 Although we can derive an explicit expression for ly(Mj) (see expression (A.1) in Appendix

 A.2), direct computation of the posterior probability in expression (5.3) is very difficult owing
 to the large number of models in M (approximately 177 million in our application). Therefore,
 we shall approximate the posterior distribution of the models via simulation, using a Markov
 chain Monte Carlo sampler on the model space M. Appendix A.2 provides more details on the
 particular sampler that we have adopted, which is of the Metropolis-Hastings type. In case we
 have no categorical variables, the sampler essentially simplifies to the MC3 method of Madigan
 and York (1995) that was also used in Raftery et al. (1997).

 5.4. Inference on regression coefficients
 We now consider inference on a linear combination

 k

 b' E bil31
 1=1

 of the elements of the k-dimensional regression vector 0, where k = 28, corresponding to all
 the variables in Table 1. To do this, we need to apply the model averaging ideas explained
 in the previous subsection. Under model Mj, b'P3 takes the value 0 if none of the regressors
 corresponding to a non-zero element of b is included in Mj and has a Student t-distribution
 otherwise. The exact form of the posterior distribution of b'P is

 (a) with probability p -- j:Bjb=oP(MjIy),

 b'P = 0, (5.4)

 and
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 (b) with probability 1 - p, b'P3 has density

 1 f I '/3 - 'B'(Z'Zj) Q- 1 0go+ 1
 1 - p j:jbZb0 9o +1 G b'B (Z Zj)-I Bjb

 (5.5)

 where Bj is the relevant selection matrix under model Mj in the sense that P(j) = B/3, with
 P(j) corresponding to the regressors included in Mj, 0 is a vector of Os of the appropriate
 dimension and fs(x I v, m, a) denotes the probability density function (PDF) of a Student
 t-distribution with v degrees of freedom, location m (the mean if v > 1) and precision
 a (with variance v/{(v - 2)a} provided that v > 2). Finally, Gj is defined in expression
 (A.2) in Appendix A.2. From expressions (5.4) and (5.5) it is clear that, once we have
 run the Markov chain on M to compute P(Mj ly), we can obtain the distribution of b'3
 analytically.

 6. Prediction

 We now focus on forecasting the value of a new observable, say sf, given a vector of explanatory
 variables and the observed sample s. Our forecast for sf will be based on the out-of-sample
 predictive distribution, which is obtained from expression (3.1)-(3.2) after integrating out all
 the parameters and all possible models using their respective posterior distributions. From
 expression (3.1)-(3.2) it is immediate that the predictive distribution for sf will be a mixture of
 a point mass at zero and a continuous distribution. In particular, we have the following.

 (a)

 Sf = 0 (6.1)

 with probability

 Wf ~,(x '7) p(-1Is) dy, (6.2)

 where xf e 9l+k contains the element 1 and the explanatory variables for sf. The integral
 in expression (6.2) can be calculated by averaging 4D(x'7y) over the draws of 7y generated
 through the Gibbs sampler in Appendix A. 1.

 (b) With probability

 1 - Wf, (6.3)

 sf > 0 and it has PDF

 SgJ(Zj Zy,) (sfy)= sf j=1

 Q- Q+I , (Zj Zj)-1
 Q-1Gj { + Zf(') z f(ij) P(Mily), (6.4)

 where zf(j) is the k j-dimensional vector that contains the explanatory variables (demeaned
 as indicated after expression (3.2)) that are relevant under model Mj.

 In a practical context, we may be interested in predicting the aggregate catch of a group
 of ships during a certain spell of time. This means that we focus on the predictive distribution of
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 I

 Ssum E sfi
 i=1

 rather than considering one single observable sf as was the case above. The predictive distribu-
 tion of ssum is computed by averaging its sampling distribution over parameters and models by
 using the relevant posterior distributions. It is clear from model (3.1) that in the sampling sum
 is 0 with probability

 I

 w(y) H ((Xfy) i=1

 (where xfi e l+k corresponds to the explanatory variables for sfi) and has some PDF with probability 1 - w(-y). This means that we forecast

 (a) ssum = 0, with probability Wsum f w(y) p(yls) dy, which, as before, we compute by
 averaging w(-y) over the Gibbs draws of -y and

 (b) with probability 1 - Wsum, ssum > 0 and has a predictive distribution given through
 some PDF on (0, oo). Although an explicit expression for this PDF is complicated to
 derive, we can approximate this distribution via simulation, drawing a set of values from
 model (3.1)-(3.2) where the parameters are, in turn, drawn from the posterior distribution
 (taking model averaging into account).

 7. Discussion of results

 7. 1. Computational issues and model probabilities
 Most of the discussion in this subsection will focus on the Markov chain on model space, since
 it is the most computationally demanding aspect of our model. In the interest of the practical
 importance of this methodology, and to enhance its appeal to applied researchers, we have made
 particular efforts to create an efficient set of programs that can deal with problems of empirical
 relevance. The programs are coded in Fortran 77 and make efficient use of central processor
 unit time, e.g. through storing results for already visited models in stacks (saving recalculations
 when a model is revisited by the chain). As a consequence, for example, the entire single-ship
 analysis presented in what follows takes between 1 and 3 h (depending on the species) on a
 200 MHz PowerPC-based desktop computer.

 Throughout, we shall split the available observations into a subsample used for posterior
 inference (the 'estimation subsample') and the remaining observations, which will be used for
 comparison with the predictive distribution (the 'prediction subsample'). Observations are ran-
 domly assigned to the estimation subsample with probability 0.75 and the resulting number of
 observations in this subsample is n = 5087 with Q in Table 4 indicating the number of positive
 observations in this subsample. The total number of regressors is k = 28 (all those in Table 1)
 for halibut, redfish and grenadier. For cod, k = 26 because there are no catches in November or
 December. For skate, k = 27 as we leave out the quadratic interaction term between mesh size
 and gill nets to avoid problems of collinearity. Thus, we obtain Q > k2 for halibut, grenadier
 and skate, which leads to choosing go = 1/Q in prior (5.2), whereas for cod and redfish we

 choose go = 1/k2.
 The Markov chain that was used for computing posterior model probabilities is described in

 Appendix A.2. Table 4 lists the number of drawings retained and the initial number of discarded
 draws (the 'burn-in'), as well as the total number of models visited. We consider several strategies

 for assessing the convergence of this chain. Since the marginal likelihood for model Mj, ly(Mj),
 can be calculated explicitly, we shall apply formula (5.3) to compute posterior probabilities on
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 Table 4. Monte Carlo performance and posterior probabilities

 Results for the following species.

 Cod Halibut Redfish Grenadier Skate

 Number of observations Q 583 4161 727 2891 2256
 Number of retained drawings 1000000 500000 1000000 500000 2000000
 Number of discarded drawings 500000 100000 500000 100000 1000000
 Number of models visited 32739 1906 18264 2840 5202

 Number of non-equivalent models 24229 485 15940 1766 3266
 visited

 Window estimate and empirical 0.9890 0.9782 0.9919 0.9909 0.9659
 frequency correlation coefficient

 Weighted average q 0.1602 0.0554 0.2834 0.0776 0.0392
 Posterior probability covered by 0.8811 0.9438 0.9530 0.9695 0.9988

 chain

 Posterior probability of best model 0.0335 0.0510 0.0791 0.1019 0.0883
 Number of models required for 4022 144 1494 156 235
 90% posterior probability

 Posterior probability of stepwise 7.4 x 10-13 7.3 x 10-5 4.2 x 10-5 0.0640 0.0010
 model

 the basis of the models visited by the Markov chain (instead of using the empirical frequencies
 of visiting each model). This idea, called 'window estimation' by Clyde et al. (1996), implies that
 the computed posterior odds (ratios of posterior probabilities) between any two models visited
 are the actual posterior odds. From Table 4 we see that the correlation coefficient between the
 posterior probabilities of all models visited computed on the basis of empirical frequencies and
 window estimation is always above 0.96. This provides an indication of convergence of the chain.

 A second diagnostic of convergence is based on the fact that models that are full in one or
 more categorical variables have exactly equivalent counterparts in the model space (that only
 differ in the chosen levels of the categorical variables for which they are full). Asymptotically,
 such equivalent models are visited equally often, which suggests looking at

 q - max(freqi) - min(freqi) freqi,

 where freqi is the number of times that the chain visits representation i of the same model. Clearly,
 q e [0, 1] with q = 0 the best result and q = 1 the worst, indicating that only one of the equivalent
 representations was visited. Table 4 reports a weighted average of the q-values, with weights
 proportional to the posterior probabilities of each model representation. The reported q-values
 are all reasonably small. Table 4 also lists the number of truly different models that were visited.

 A third measure of convergence is provided by an estimate of the total posterior model
 probability covered by the chain following George and McCulloch (1997). This estimate is based
 on comparing visit frequencies and the aggregate marginal likelihood for a predetermined subset
 of models. Table 4 presents this estimate for the various species, which is never below 88% (and
 typically well above 90%).

 All diagnostics indicate that convergence is never a problem, which was corroborated by the
 fact that other independent runs started from randomly chosen models led to virtually identical
 results.
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 The chains visit a relatively small number of models: except for cod always less (and usually
 much less) than one model in every 9600. Throughout, the acceptance probability of proposals
 in the Markov chain Monte Carlo algorithm is between 6% and 18%. The best model (the model
 with the highest posterior mass) contains between seven (cod) and 18 (halibut) regressors and
 often receives quite a substantial posterior probability, but never so large that model averaging
 becomes unnecessary. The number of highest probability models that is needed to cover 90%
 of the total visited posterior mass (also presented in Table 4) gives a further indication of the
 substantial spread of the posterior mass in model space.

 Marginal posterior inclusion probabilities of the various regressors (1 - p with p obtained
 from expression (5.4)) are given in Table 5. Clearly, the models visited for halibut are always
 full in the variables year and zone (which means that each of the two years has probability

 1 - 1 = 0.5 of inclusion and each of the four zones has probability 1 - - = 0.75 of inclusion). Note the large differences in the posterior probabilities of inclusion across the various species,
 which supports our decision to model each species separately.

 Convergence of the Gibbs sampler for the probit model was assessed by monitoring the
 posterior moments of -y in different runs of various lengths. Retaining 20000 draws after a
 burn-in of 5000 was found to be more than sufficient.

 Table 5. Marginal posterior inclusion probabilities of regressorst

 Regressor Probabilities for the following species.

 Cod Halibut Redfish Grenadier Skate

 Year 1993 0.49 0.50 0.03 0.49 0.41
 Year 1994 0.49 0.50 0.03 0.49 0.41

 Drift gill net 0.12 0.01 0.15 0.96 0.06
 Anchored gill net 0.14 0.04 0.16 0.05 0.06
 Otter trawl 0.93 0.22 0.23 0.54 0.03

 Otter trawl pair 0.21 1.00 0.56 0.47 0.03
 Zone 3L 0.12 0.75 0.02 0.12 0.99
 Zone 3M 0.85 0.75 0.99 0.82 0.16
 Zone 3N 0.20 0.75 0.02 0.97 0.85
 Zone 30 0.12 0.75 0.99 0.04 0.02

 January 0.03 0.99 0.05 0.05 0.89
 February 0.04 1.00 0.87 1.00 0.23
 March 0.05 0.88 0.90 1.00 0.23

 April 0.16 0.89 0.99 1.00 0.23
 May 0.75 0.88 1.00 1.00 0.49
 June 0.10 0.37 0.10 1.00 0.23

 July 0.04 0.15 0.36 0.02 0.79
 August 0.03 0.16 0.30 0.02 0.80
 September 0.08 0.97 0.91 0.02 0.80
 October 0.10 0.99 0.15 0.05 0.81
 November 0.99 0.10 0.02 0.88
 December 0.04 0.17 0.02 0.02

 Gill net x f(mesh size) 0.19 1.00 0.08 0.06 0.98
 Gill net x f(mesh size)2 0.13 0.94 0.10 0.09
 Trawl x f(mesh size) 0.58 0.03 0.97 1.00 1.00
 Trawl x f(engine power) 0.13 1.00 0.92 0.23 1.00
 log(length of vessel) 1.00 1.00 0.11 0.02 1.00
 log(GRT) 1.00 1.00 0.15 1.00 0.60

 tf(') denotes the transformation indicated in Table 1.
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 7.2. Posterior results

 Here we present some posterior results for the regression coefficients in 0 and -, limiting our-
 selves to some illustrative findings.

 We recall that all the available regressors in Table 1 are used for the probit model, where
 we exclude a reference level (arbitrarily chosen as year 1994, otter trawl by pair, zone 30 and

 December) for each categorical variable. Since the elements in 7 are not directly interpretable,
 we present posterior results for transformations with a clear interpretation. For the categorical
 regressors, we compute the difference in the probability of zero catch between a category and
 its reference case-e.g. year 1993 versus year 1994-when all other explanatory variables are

 evaluated at typical values. Thus, for categorical variables we compute ,(P',/y) - b( r'-y), where
 ic and Xr are vectors of 'typical' values, identical except for the relevant categorical variable.
 For these typical values we take the modal level for categorical variables and median values
 for continuous variables. We shall consider two sets of values throughout: one corresponding
 to a typical gill netter (taking modes and medians over the gill net observations, and taking
 anchored gill net as the reference level for fishing technique) and one corresponding to a typical
 trawler. For the continuous variables, we consider the derivative of the probability of zero catch
 with respect to the logarithm of the continuous variable. This gives us the (local) effect on the
 probability of zero catch of a proportionate change in the underlying continuous variable. As
 with the categorical variables, this effect will be evaluated at typical values for all regressors.

 Since all these measures (called 'effects' in what follows) are functions of y, we can compute
 their full posterior distributions. Table 6 presents the posterior mean and standard deviation
 of the effects of all relevant variables for both typical ships considered. We present results for
 halibut and redfish only, which are the most important species in terms of live-weight caught.
 In addition, halibut is the species with the lowest proportion of zero catch (18.5%), whereas
 redfish has one of the highest proportions of zeros (85.7%).

 From Table 6 we see that the regressors can have a large effect on the probability of zero
 catch, and that the effect is rather specific to the species considered. In view of the decline of
 the Grand Bank fisheries at the time that the data were collected, we could have expected the
 year to have a large effect. However, only for grenadier (not presented in Table 6) have we found
 a substantially lower probability of positive catch in 1994. For the other species the difference
 is small. We now briefly discuss some results for halibut and merely note that the findings for
 redfish are often very different, as can be seen directly from Table 6. The probability of catching
 halibut with a gill net is higher with a drift gill net than an anchored one (which serves as the
 reference case for computing the effects for gill netters), and a single otter trawl does better
 than a trawl by pair. As far as the location of catch is concerned, the probability of catching
 halibut is lowest in the reference zone 30 and highest in zone 3L. The time of the year also has
 a substantial effect: December is the worst month of the year, whereas March and April seem
 best. Increasing the mesh size of a gill net in a neighbourhood of the median value (140 mm)
 has a positive effect on the probability of catch: locally increasing the mesh size by 1% increases
 the probability of catching halibut by 0.002-0.028. The local effect of changes to mesh size for
 a typical trawler, however, is much smaller. This illustrates the importance of treating gill nets
 and otter trawls separately. The engine power of ships with trawl gear does not seem to play a
 substantial role either, although more power is consistently associated with a higher probability
 of catch. Finally, longer vessels tend to have a lower probability of zero catch, but this is partly
 offset by the opposite effect of GRT.

 Let us now focus on results for the continuous part, modelled as in Section 5. The coefficient

 /3t corresponding to a categorical variable has the following interpretation: exp(/31) is the ratio
 between the median catch with the corresponding dummy variable equal to 1 and the median
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 Table 6. Posterior moments of some effects in the probitt

 Regressor Moments for the following species and ships:

 Halibut Redfish

 Typical gill net Typical trawl Typical gill net Typical trawl

 Year 1993 -0.00 (0.04) -0.00 (0.00) 0.02 (0.01) 0.01 (0.01)
 Drift gill net -0.16 (0.09) -0.58 (0.08) -
 Otter trawl -0.39 (0.03) - -0.01 (0.01)
 Zone 3L -0.61 (0.05) -0.49 (0.06) 0.47 (0.06) 0.28 (0.05)
 Zone 3M -0.22 (0.04) -0.21 (0.05) 0.03 (0.02) 0.07 (0.04)
 Zone 3N -0.48 (0.04) -0.41 (0.05) 0.52 (0.06) 0.29 (0.05)
 January -0.31 (0.13) -0.08 (0.05) 0.25 (0.10) 0.10 (0.05)
 February -0.40 (0.12) -0.09 (0.05) 0.04 (0.02) 0.08 (0.05)
 March -0.52 (0.12) -0.10 (0.05) 0.03 (0.02) 0.08 (0.05)
 April -0.55 (0.12) -0.10 (0.05) 0.03 (0.01) 0.08 (0.05)
 May -0.33 (0.12) -0.08 (0.05) 0.03 (0.02) 0.08 (0.05)
 June -0.21 (0.12) -0.07 (0.05) 0.09 (0.03) 0.09 (0.05)
 July -0.25 (0.12) -0.08 (0.05) 0.01 (0.01) 0.05 (0.06)
 August -0.31 (0.12) -0.08 (0.05) 0.00 (0.01) 0.02 (0.06)
 September -0.35 (0.12) -0.09 (0.05) 0.00 (0.01) 0.03 (0.06)
 October -0.34 (0.12) -0.09 (0.05) 0.00 (0.01) 0.04 (0.05)
 November -0.38 (0.12) -0.09 (0.05) 0.01 (0.01) 0.06 (0.06)
 Mesh size -1.49 (0.67) -0.05 (0.04) -0.88 (0.28) -0.08 (0.04)
 Engine power - -0.03 (0.01) - 0.01 (0.00)
 Length of vessel -1.19 (0.15) -0.10 (0.03) 0.15 (0.08) 0.04 (0.02)
 GRT 0.81 (0.08) 0.07 (0.02) -0.19 (0.06) -0.05 (0.01)

 tEntries are posterior means with standard deviations in parentheses.

 catch in case this dummy variable is 0. If a continuous regressor is the logarithm of a variable

 (length and GRT), then the corresponding regression coefficient tI is unequivocally interpreted
 as an elasticity (i.e. it approximately reflects the relative percentage change in median catch as a
 consequence of a 1% relative change in the original untransformed continuous regressor). For
 the interactions with trawls, to which the more complicated transformation indicated in Table

 1 was applied, the elasticity of the median catch with respect to that regressor is given by f3t
 times a positive factor (which depends on where we evaluate the elasticity). For the gill net mesh
 interaction, the elasticity is a linear combination of both the intervening components of 0.
 The k-dimensional (k = 28 for most species) regression vector P has a rather complicated

 posterior distribution, which is a mixture of point masses at zero and continuous parts. It is
 therefore quite challenging to present this distribution in an easily interpretable format. In what
 follows, we shall illustrate some aspects of this posterior distribution for halibut. Again, the
 results vary considerably across species.

 Figs 2-4 present, for some selected linear combinations of the components of /, b'P, the
 posterior PDF (5.5) for halibut. In addition, the gauge on top (black shading) indicates the
 posterior probability that b'P3 0 0. The vertical lines presented in some of these graphs relate to
 the classical estimate and 90% confidence interval obtained from a stepwise regression technique,
 as explained and discussed later in Section 7.4.
 Fig. 2 focuses on the elements of / corresponding to year and zone. From Table 5 we note

 that all models visited are 'full' in these two categorical variables (i.e. L, - 1 out of the Lr
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 Fig. 2. Halibut: year and zone

 possible levels are always included in the model). This induces Lr - 1 modes in the marginal
 posterior PDF for the regression coefficients, where every mode corresponds to a different level
 being excluded (and, thus, treated as the reference level). For year we have Lr = 2 possible
 levels, leading to unimodal distributions which indicate that 1993 is clearly a better year than
 1994. For zone we have Lr = 4 levels and we observe the expected Lr - 1 = 3 modes. From
 the relative locations of the modes, it is easy to derive that, for example, the three modes for
 zone 3L correspond to taking zone 3N, 3M and 30 (from left to right) as reference levels. There
 is a clear ranking in that zone 30 is the worst, followed by 3M, 3L and 3N, in that order.
 The difference between zones 3L and 3N is not very large (about 0.15 between the modes, or
 a factor of 1.16 between median catches), which accounts for the apparent bimodality of the
 PDF corresponding to zone 30. Zone 30 is the zone with by far the least observations, leading
 to Student t-distributions with a large spread in expression (5.5), which means that the modes
 corresponding to reference cases 3N and 3L can no longer be separately identified in Fig. 2 for
 zone 30. In a case such as this, where models are full in a categorical variable, it does not matter
 which level is taken as a reference level (since all levels are always identified as being different),
 and we could equivalently fix the reference level and present conditional results instead of the
 marginal results that are given here. For example, if we give results for zone conditioned on
 the reference level zone 30, only the extreme right modes appear for the other zones. However,
 when more than one level at a time is excluded from models visited (as is usually the case), we
 need the extra flexibility that is provided by our framework where reference levels are not fixed
 in advance.
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 Fig. 4. Halibut: fishing techniques and their interactions

 In general, we should aim to present results for quantities that have the same meaning re-
 gardless of the choice of reference levels. An interesting way to present regression coefficients
 of categorical variables is in the form of centred coefficients, i.e.

 Lr

 6s =_ - 0 Oi/L, (I= 1.... Lr), i=1

 for a categorical variable with Lr levels and original coefficients (f1...iL). Clearly, ELr161 = 0 and Si indicates the difference between level 1 and the average, so its meaning is

 not dependent on any particular choice of reference level. Fig. 3 presents the marginal poste-
 rior distributions of the centred coefficients associated with each zone. The ranking of zones
 mentioned above is now immediately obvious from Fig. 3.

 The effects of the fishing techniques and their interactions with mesh size and engine power
 are examined in Fig. 4. From Table 5, we see that the categorical variable corresponding to
 fishing technique (with Lr = 4 levels) is not fully represented in every model. Some levels (the
 gill net techniques) are almost never included and otter trawl by pair is always included. Thus,
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 otter trawl by pair is never treated as a reference level (indicating that it is quite different from the
 other levels) whereas often more than one of the other levels are excluded (and thus treated as
 equal). The fact that models now exclude either one, two or three of these levels at the same time
 creates more possibilities for modes in the marginal distributions of the associated regression
 coefficients, and interpretation becomes much more difficult. However, now we would lose
 flexibility if we fixed a reference level (for example, if we had chosen otter trawl by pair as the
 reference level, we could not have accommodated the situation described above, where trawl by
 pair is different from all the others and some of the other levels are equal).

 Evaluating the relative merits of the fishing techniques is complicated by the presence
 of interactions with mesh size and engine power. Therefore, Fig. 4 presents the posterior distri-
 bution of the differences between the regression coefficients associated with drift and anchored
 gill net (which are equally affected by the interactions) and also between those for otter trawl
 and otter trawl by pair. These are interpretable quantities (logarithms of median catch ratios)
 and reveal little difference between both gill nets, whereas single trawls tend to do better than
 trawls by pair. To obtain a rough idea of the overall effects of the different fishing methods, we
 can consider the configuration of the best model (the model with highest posterior probability),
 which includes trawl by pair as the only technique and all interactions except for trawl with
 mesh size. On the basis of the posterior mode of the included regression coefficients for this
 model, and evaluating the effect at median values for the continuous regressors, we obtain the
 following ranking from better to worse: otter trawls, trawls by pair (median catch about 58%
 of otter trawls) and both gill nets (median catch about 10% of otter trawls). These numbers are
 roughly consistent with the observed values (which are, of course, affected by other factors as
 well). Fig. 4 also graphs the difference in log(median catch) for two gill net mesh sizes, suggest-
 ing a higher median catch for 140 mm mesh (median and third quartile from Table 2) than for
 130 mm (first quartile). Finally, for trawls, mesh size is almost never included in the model,
 whereas engine power has a positive effect on the median positive catch of halibut.

 For brevity, we have not shown the posterior density functions of the regression coefficients
 of the months or the size variables. The main messages here are that the months January until
 May have a positive effect, whereas July until November lead to a lower median catch of halibut.
 Finally, length has a positive effect and GRT a negative effect. From Fig. 1, we know that both
 variables are strongly positively correlated and, on balance, the effect of size on the median
 catch of halibut will be quite small.

 7.3. Predictive results

 On the basis of the posterior results partially described above, we shall now predict observations
 in the subsample that was not used for posterior inference.

 First, let us examine how well we predict the probability of zero catch. For every observation
 in the prediction subsample, we compute wf = P(sf = Ols) as in expression (6.2). An interesting
 check on the adequacy of our probit model is then to compare these predictive probabilities
 with the actual occurrences of zero or positive catches. Table 7 presents the means and standard
 deviations of wf computed over the zero and the positive observations in the prediction sample.
 Clearly, wf tends to take much higher values for those observations that turn out to be 0,
 indicating that the probit model does far better than simply assuming that the probability of a
 zero catch is constant across observations.

 Let us now use the predictive results for the continuous part described by density (6.4) to
 assess the predictive adequacy of the modelling of positive observations. For all the positive
 observations in the prediction subsample we record in which percentile of the continuous part

This content downloaded from 129.219.247.33 on Mon, 12 Dec 2016 23:50:26 UTC
All use subject to http://about.jstor.org/terms



 Bayesian Modelling of Catch 275

 Table 7. Predictive zero catch probabilityt

 Probabilities for the following species:

 Cod Halibut Redfish Grenadier Skate

 Zero observations 0.94 (0.14) 0.59 (0.30) 0.92 (0.13) 0.63 (0.30) 0.66 (0.20)
 Positive observations 0.45 (0.21) 0.09 (0.14) 0.45 (0.28) 0.29 (0.16) 0.45 (0.19)

 tEntries are means with standard deviations in parentheses.
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 Fig. 5. Q-Q-plots for predictions of individual observations: (a) cod; (b) halibut; (c) redfish; (d) grenadier;
 (e) skate

 of the predictive distributions (using the corresponding values of the regressors) the actual
 observations fall. Contrasting predictive with empirical quantiles leads to a Q-Q-plot that
 indicates how well the model (estimated on the basis of the estimation subsample) fits the data
 in the prediction subsample. As the assignment of observations to either subsample is random,
 we would expect such plots to be a good measure of model accuracy. Fig. 5 presents these
 Q-Q-plots for all five species, indicating that the model fit is always quite good.

 For illustration, we now show some predictive distributions for particular observations in
 the prediction subsample. Fig. 6 graphs the predictive PDFs of the non-zero catch of halibut
 for observations i = 196 (270 kg) and i = 1189 (3600 kg)--i.e. density (6.4). From the probit
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 Fig. 6. Halibut: predictive densities and actual observed values for (a) ship-day 196 and (b) ship-day 1189
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 Fig. 7. Predictive densities and actual observed values for clusters: (a) halibut, cluster 277; (b) redfish,
 cluster 140; (c) grenadier, cluster 236

 analysis, the probability of zero catch for observation 196 is 0.43, whereas observation 1189
 has a probability of only 0.03 of being equal to 0. The rather different predictive distributions
 illustrate the importance of the fishing gear. The main difference between the observations is
 that 196 corresponds to a vessel using drift gill nets whereas 1189 is with an otter trawl. In both
 cases, the actual catch (indicated by a broken vertical line in Fig. 6) is quite compatible with the
 predictive distributions.
 For policy purposes, it might be interesting to predict, not the catch of one single ship, but
 the aggregate catch of a number of ships, that are known to be in a certain area of the Grand
 Bank at a certain time of the year. If we group the data into clusters of 5 ship-days, we can
 analyse how such predictions, based on the estimation subsample, compare with the actual
 retained clusters. Clusters of ships that are in the same zone on the same day are likely to be
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 of most interest for practically relevant predictions. To mimic such clusters, we have sorted
 the prediction subsample by year, day and zone (in that order) and selected clusters of five
 consecutive observations from that ordering. The predictive distribution, computed as described
 at the end of Section 6, leads to Q-Q-plots (not shown) that indicate adequate predictions for
 clusters. Fig. 7 presents some individual cluster predictive densities for the non-zero catch of
 halibut, redfish and grenadier. The probability of zero aggregate catch varies dramatically across
 these clusters: from less than 10-6% for halibut to 0.91% for grenadier and 58.8% for redfish.
 Again, the quantities caught are well matched by the corresponding predictive distributions.
 These predictive densities immediately lead to probability statements, e.g. about a fleet of certain
 characteristics exceeding a certain catch, which could straightforwardly be used in a decision
 theory context.

 7.4. Classical methods

 In a classical statistical framework, posterior model probabilities are not readily available and,
 usually, a particular model is selected instead of averaging over models. Given the substantial
 spread of the posterior mass over the models in M (see Table 4), that does not seem an adequate
 strategy for the analysis of these data.

 Nevertheless, if we wish to use classical methods for the selection of variables, a popular
 technique is stepwise regression. Table 4 records the posterior probabilities of the models selected
 by using forward selection and backward elimination as in Lo et al. (1992). Here we base the
 choice of reference levels for the categorical variables on the best model: we can choose any
 reference level for those categorical variables in which the best model is full and for the other
 categorical variables we choose from the levels that are excluded in the best model the level with
 the lowest posterior inclusion probability (see Table 5).

 The models chosen by this stepwise regression technique have between 6 (cod) and 21 (halibut)
 variables. For grenadier and skate, this method identifies the important variables reasonably well:
 no variables with posterior probabilities over 0.8 are left out and only one regressor with a poste-
 rior inclusion probability under 0.2 is selected (for skate). Accordingly, the posterior probability
 of the stepwise model is relatively high for these species (see Table 4). For halibut and redfish the
 performance of stepwise regression is much less in line with the posterior inclusion probabilities.
 For cod there is an even larger conflict between the stepwise model and the posterior inclusion
 probabilities, and, as a consequence, the stepwise model picks up virtually no posterior mass.

 The classical 90% confidence intervals corresponding to the models selected by stepwise
 regression are indicated in Fig. 2 and the last two plots of Fig. 4 by dotted vertical lines. The
 estimated value is indicated by a broken line and a single dash-dot line at zero represents
 exclusion of the corresponding regressor. Even though some confidence intervals roughly con-
 tain 90% of the posterior mass, they can be quite different from the corresponding Bayesian
 credible intervals.

 8. Concluding remarks

 In this paper we have outlined the modelling of daily live-weight catches of different species of
 fish in the Grand Bank fishery. An important feature of the data is the fact that on most days
 not all species are caught by a certain ship. Thus, modelling of these implicit zero observations
 is crucial. This was done through a probit model. For the positive observations, we have used
 a log-normal regression model, where we allow for any combination of regressors from a set
 of different explanatory variables. We deal with model uncertainty through Bayesian model
 averaging. Many of the regressors are categorical variables, and we pay particular attention to
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 the treatment of categorical variables in a model uncertainty context. In particular, we allow
 for any combination of levels to be included in the models, as long as no categorical variable
 appears with all possible levels (thus, no reference level is fixed in advance). To deal with the
 resulting 177 million possible models, we apply a Markov chain Monte Carlo algorithm, based
 on the Metropolis-Hastings sampler, to generate a Markov chain of drawings in this large model
 space. Throughout, we use a carefully chosen prior distribution which also takes into account
 that models that are full in categorical variables have equivalent counterparts (corresponding to
 different choices for the excluded level of these categorical variables), and we examine posterior
 and predictive inference. The former can be instrumental in policy decisions regarding the
 effect of certain ship characteristics or regulations concerning, for example, mesh size or fishing
 techniques. The latter is required if we wish to predict catches per species from easily obtained
 information regarding the presence of vessels with known characteristics in a certain area at a
 certain time, rather than having to board these vessels (which is much more costly and altogether
 impossible for ships from countries outside the Northwest Atlantic Fisheries Organization). The
 methods would also be useful for estimating the total catch by area when misreporting and illicit
 landings are common. Bayesian model averaging naturally takes into account all uncertainty
 concerning parameter values as well as model uncertainty. Thus, realistic predictions can be
 made for one or more ship-days, duly taking into account the ships' characteristics, location
 and month as well as parameter and model uncertainty. Using efficient code, new data can
 easily be processed and posterior and predictive inference can be conducted without excessive
 computational requirements. We find that the model proposed fits our data relatively well, and
 that results differ crucially between species.

 There are several ways in which the model used here could be extended. A possible elaboration
 would be to include random ship effects-i.e. ship-specific intercepts-in either the discrete or
 the continuous part of the model. They could pick up certain quality aspects of the vessels
 that are not captured in the regressors. A potential interpretation of such individual effects
 would be as the skill of the captain of the vessel, which was equated with technical efficiency
 in a stochastic frontier model by Kirkley et al. (1998). Barring rather restrictive forms for the
 distribution of the random effects, this would result in substantial complications: for example,
 our computations for the continuous part rely on the fact that the marginal likelihood for each
 model can be computed analytically. We have also avoided including dynamic effects in the
 model; such effects might provide a 'closer fit' but are not in line with the aim of providing
 easily computed operational predictions on the basis of available information (which typically
 does not include a recent history of quantities caught by a cluster of ships considered). In
 addition, their inclusion would be at the cost of adding to the theoretical and computational
 complexity of the model. Also, it might be a useful exercise to examine the effects of allowing
 for heteroscedasticity in the error term of the generic model (3.2) by making a depend on,
 for example, the size of the ship. Of course, both the theory and the practical implementation
 would become more cumbersome as a consequence (unless such a dependence would be fixed,
 rather than estimated from the data). Finally, again at a considerable cost in terms of added
 complexity, one might propose a multivariate model for all species with correlated error terms.
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 Appendix A: Samplers

 A. 1. Gibbs sampler for probit model
 We introduce independent latent variables mi (i = 1 ..., n), with mi distributed as normal(x>y, 1). From
 model (3.1), it is immediate that si = 0 is equivalent to mi > 0, whereas si > 0 is equivalent to mi < 0. The
 posterior distribution is, therefore,

 p(yls) = p(yimi < 0 for i= 1..., Q; mi > 0 for i = Q + 1..n).

 A Gibbs sampler, augmenting with m (ml .... mn)', consists of drawing from

 p(Qlm, s) = p(yIm) = f'+k[yI {(1 + ho)X'X}- X'm, {(1 + ho)X'X}1]
 and

 p(m 7, s) A fy fl(mi x <i, l)I(m;<o r ff(milxi7, l)I(mi>O). i=1 i=Q+1

 A.2. Markov chain Monte Carlo sampler on model space
 Suppose that the chain is currently at Ms, which has ks continuous regressors and nr levels for categorical
 variable r (where 0 < ks < K, r = 1,..., R and nr E {0, 1,..., Lr - 1}). Suppose that there are fs
 full categorical variables, cl,..., cf,-i.e. nc, = Lc - 1 ...f nc= Lc, - 1. The number of regressors
 in Ms is then Ns = ks + nl +... + n , whereas the maximum amount of regressors in any model is
 Ntot = K + L1 +... + LR - R. The Metropolis-Hastings algorithm proceeds along the following steps.

 Step 1: propose a new model Mean in several stages. First propose Ncan:

 Ncan N, + 1 with probability (Ntot - N,)/Ntot,
 Ns - 1 with probability Ns/Ntot.

 Now propose Mean conditionally on the drawn value of Ncan.

 (a) If Ncan = Ns,+ 1, sample Mcan by uniformly adding one regressor to Ms, excluding levels of categorical
 variables in which Ms is already full. We can choose from Ntot - Ns + R - f, variables, so the
 probability of adding each is 1/(Ntot - N, + R - fs). Define Tcan, s = (Ntot - Ns + R - fv)/(Ntot - Ns).
 Proceed to step 2.

 (b) If Ncan = Ns - 1, uniformly drop one regressor from Ms to form Mean; each choice has probability
 1/Ns. Define Tcan,, = (Ntot - Ncan)/(Ntot - Ncan + R - fcan). Proceed to step 2.

 Step 2: compute

 (a) Bcan,s = ly(Mcan)/ly(Ms), where

 ly(Mj) c ( Ga (Q-1)/2 (A.1) 90 ) + /2
 with

 1 go

 Gj = yMl , + (y - tyQ)'(y - YQ), (A.2) 9o + 1 9o + 1
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 where LQ is the Q-dimensional vector of is, y = t'yY/Q, Wj = (Le : Zj) and Mw= = IQ - Wj
 (W Wj)- Wj, and

 (b) Lcan,s = (Ilfsl L_,/I-ifm L,, with f, andenoting the number of full categorical variables in Mcan.
 Step 3: with probability q = min(1, Bcan,sLcan, sTcan,s) the chain moves to Mcan, whereas with probability
 1 - q it stays at Ms.
 Step 4: record the new state of the chain (be it Mean or Ms) after uniformly redrawing the reference level
 for each of the full categorical variables.
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