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Personalized Hematopoietic Stem Cell Transplant (HSCT)

I HSCT is a common treatment for blood/bone marrow cancers

I Here we are concerned with unrelated donors that are human
leukocyte antigen (HLA) 8/8 matched to the recipients
transplanted from 2016:2018

I Goal: optimal donor matching for better recipient outcomes

I The outcome here is time to an event, i.e., event-free survival
with both right and left censoring

I Events include death, relapse, graft failure/rejection or
moderate/severe chronic graft vs. host disease (GVHD):
whichever comes first
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I There are P = 45 covariates that may have an impact

I 6 are donor-related characteristics: age, gender/childbearing,
DPB1 match/unknown, DQB1 match and CMV match

I We wanted to learn the (likely complex) functional relationship
between these covariates and the outcome with BART

I The cohort has 8567 patients: N = 7157 for training

I A bit too large for our current Discrete Time BART

I For this application, we developed NFT BART methodology
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Given the data, we want to estimate things like

S(t, x) = 1− P(T < t | x)

the survival function.

Given the information about the donor and recipient in x , what is
the probability the time to event is greater than t.

All the events are bad, so S(t, x) is the probability of surviving
time t or longer.

We could use this to match donors with recipients.
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Event-free Survival: Recipient Comorbidity Score
Friedman’s partial dependence function

How does survival
depend on
Comorbidity Score?

We estimate the
S(t, x)
as Comorbidity varies.

Friedman:
average out other x ’s.

60% chance of
living 10 months
or longer.
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Kind of a funny application for Rob !!!
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Goal:

We want to estimate these survivial functions flexibly.

A lot of survival analysis we starts by working in terms of the
harzard function.

We will start from the Acclerated Failure Time model (AFT),
which basically means you model the log of time.
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Basic AFT model

We have data (ti , δi ) where i = 1, . . . ,N subjects
if δi = 0, then ti is a right censoring time
else if δi = 1, then a failure time
else if δi = 2, then left censoring

Take logarithms yi = log ti and use a linear model.

yi = µ+ x ′iβ + εi

with εi iid Fε(µε = 0, σ2
ε = σ2)

where β and σ are unknown parameters to be estimated.
Fε is typically parametric (normal, extreme value).

If there is censoring, y is latent.
if δi = 0, then yi ∼ Fε(µ+ x ′iβ, σ

2)I{log ti ,∞}
else if δi = 1, then yi = log ti
else if δi = 2, then yi ∼ Fε(µ+ x ′iβ, σ

2)I{−∞, log ti}
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Or, putting aside the complexity due to the censoring,

yi = µ+ x ′i β + σZi

where Zi are iid from some parametric family.

Very simple except for the censoring.

We don’t like linear.

We don’t like parametric errors.
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Note:

The modeling problem looks like a standard “regression” type
thing.

But, the emphasis on the survival curve means we really need to
get the probabilities right, which means we really want to get the
error distribution right.

We need need the whole distribution, not just E (Y |X ).
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AFT BART

Henderson et al. (2020).

yi = µ+ µi + f (xi ) + σZi

I f is BART.

I {µi}, DPM, constrained to sum to 1.

I Zi are iid N(0,1).
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Note:

“Fully nonparametric Bayesian additive regression trees”, (2019),
Edward George, Purushottam Laud, Brent Logan, Robert
McCulloch, Rodney Sparapani

yi = µi + f (xi ) + σiZi

I f is BART.

I {(µi , σi )}, DPM.

Can you get a DPM prior that works as “easily” as the standard
BART prior?

worked pretty good, need to get the R package out !!!.
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NFT BART

“Nonparametric Failure Time BART”.

yi = µ+ µi + f (xi ) + σi s(xi )Zi

I Zi ∼ N(0, 1), iid.

I f is BART, f is a sum of trees.

I s is HBART, s2(x) is a product of trees.

I (µi , σi ), DPM.

I
∑
µi = 0.

I 1
N

∑
σ2
i = 1.
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remember how DPM works !!

At each MCMC draw we will have (µi , σi ), i = 1, 2, . . . ,N.

But, there will be a bunch of repeats.

g(i) ∈ {1, 2, . . . ,G}.

G << N.

(µi , σi ) = (µ∗g(i), σ
∗
g(i)),

where

{(µ∗g , σ∗g )}, g = 1, 2, . . . ,G

are the unique values.
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Survival Function

S(t, x) ≈ 1− 1

N

N∑
i=1

Φ(
log(t)− µ− µi − f (x)

σi s(x)
).

Let wg = percent of (µi , σi ) = (µ∗g , σ
∗
g ).

S(t, x) ≈ 1−
G∑

g=1

wg Φ(
log(t)− µ− µ∗g − f (x)

σ∗g s(x)
).

Intuitively related to a mixture model.
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Clearly, NFT BART is much more flexible than AFT BART.
But is this crazy ???

2019
Low Information Omnibus (LIO) Priors for Dirichlet Process
Mixture Models Yushu Shi, Michael Martens, Anjishnu Banerjee,
Purushottam Laud

2020.
Heteroscedastic BART Using Multiplicative Regression Trees
Matthew Pratola, Hugh Chipman, Edward George, Robert
McCulloch.

But not at all obvious you can or should get it all to work together.
Rodney did the heavy lifting.

16



LIO

LIO, like BART/HBART, was designed to have robust prior default
settings that should work well for most data situations without
needing manual intervention except for perhaps altering the
relative number of desired clusters vi the α prior.

Let τi = 1
σ2
i
.

DPM:

(µi , τi ) ∼ G , iid

G ∼ DP(α,F )

- G is a discrete distribution, whose atoms are draws from F .

- α controls how many atoms effectively get weight.
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So F is a prior on (µ, τ).

F has the standard conjugate form:

τ |a0, b0 ∼ Gamma(a0, b0), µ|τ, k0 ∼ N(0, τ−1 k−1
0 ).

Priors on Priors:

k0 ∼ Gamma(ak0 , bk0), b0 ∼ Gamma(ab0 , bb0).

Have to choose: a0, ak0 , bk0 , ab0 , bb0 .
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Looks a bit daunting to choose all 5 parameters, but because we
are “standardizing” the (µi , σi ) with the identifiability constraints∑
µi = 0.

1
N

∑
σ2
i = 1.

We can reasonably impose ball park constraints such as

E (τ−1
i ) =

ab0

bb0(a0 − 1)
= 1

Same philosophy as BART !!!

Ball park a prior which is spread out, but not too spread out and in
the ball park of something reasonable.
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Simulated Examples

NFT
y = log t = f (x) + s(x) ε, ε ∼ t16

f (x) = 6x3, s(x) = exp 0.5x .

p = 1.

N = 500
50% censoring.
Red points right
censored.

x ∼ U(−1, 1)

NFT estimates are
posterior means.
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Error density estimation with posterior intervals.
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f estimation with posterior intervals.
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s estimation with posterior intervals.
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Everything the same as in the previous example except ε ∼ t4.
Posterior means.
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Error density estimation with posterior intervals.

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ε

pd
f(ε

)

Est.
True

25



f estimation with posterior intervals.
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s estimation with posterior intervals.
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Neither AFT nor NFT scenario: AFT failure!
N = 500 with 50% censoring
Weibull(0.8 + 1.2x , 20 + 40x), x ∼ Bernoulli(0.5)

Two sets of curves.
One for x=0,
one for x=1.

DT:
Step function fit:
binarize δt.
Sparapani et. al.
2016.

Solid curves are
95% intervals.
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NFT works !!!
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More serious simulation comparison

Compare AFT BART with NFT BART.

I simulated data consistent with AFT BART and data
consistent with NFT BART.

I N = 500 and 2,000 training data size.

I for data sets of size 500 (2000) we simulated 200 (100)
replicates.

I out of sample validation data set of size 500.

I 0% censoring or 50% (right) censoring.

I p = 20 covariates,
x2(j−1)+1 are Bernoulli p=.5,
x2j are uniform (0,1), j = 1, 2, . . . , 10..
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AFT BART:

y = log(t) = 2 + 1.6 x1 + .8 x2 − 2.4 x2 x3 + ε

ε ∼ N(0, exp(−2))

NFT BART:

y = log(t) = 2− 1.5 x4 + .5 x5 + 2 x5 x6 + ε

ε ∼ N(0, [exp(−2 + 1.6 x1 + .8 x2 − 2.4 x2 x3)]2)

simple nonlinearity.
20 x , but not all come in.
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Comparison of Survival Curves

Presenting results is slightly complicated by the goal of estimating
a survival function.

We will compare survival curves at the grid of survival values

Sj = .9− .2(j − 1), j = 1, 2, 3, 4, 5, = [.9, .7, .5, .3, .1].

Then for subject i with covariates xi we obtain tij such that

S(tij , xi ) = Sj .

where S is the true survival function.

xi will be an x for a simulated observation in the validation data
set.
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We then have, for example,

Ŝk(tij , xi ):

I Ŝk is the survival function obtained as the posterior mean
from the kth training data set.

I Ŝk(tij , xi ), i th observation in the validation data, j th t value
corresponding to Sj .

Then for example, we have,

rij =

√√√√ 1

K

K∑
k=1

(Ŝk(tij , xi )− Sj)2

rij : RMSE for the i th subject in the validation data, at the j th

survival value, obained by averaging over the K training data sets.
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paper has 8 sets of boxplots.

Each boxplot presents the values over observations in the
validation data.

Each boxplot corresponds to a Sj value.

I AFT or NFT data.

I 500 or 2000 train observations.

I rmse or 95% interval coverage.
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Let’s compare two sets of boxplot.
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If we compare the bottom rows which correspond to 50%
censoring,

I left figure: NFT is quite a bit better when data is NFT.

I right figure: NFT is not too much worse when data if AFT.
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Simulation study: NFT data generation N = 500
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Simulation study: NFT data generation N = 2000
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Simulation study: NFT data generation N = 500
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Simulation study: NFT data generation N = 2000
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Simulation study: AFT data generation N = 500
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Simulation study: AFT data generation N = 2000
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Simulation study: AFT data generation N = 500
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Simulation study: AFT data generation N = 2000
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Event-free Survival at 24 months: Waterfall plot

Estimated difference in
surviving 24 months
(or more).

Compare two ages
at a time.
for each train subject.

Sort by by 18 vs. 42
difference.

Estimate on train,
sort by 18 vs. 42
effect size.
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Conclusions: part 1

I We constructed our new Nonparametric Failure Time (NFT)
approach from robust Bayesian Nonparametric building blocks
I Bayesian Additive Regression Trees (BART) and

Heteroskedastic BART
I Dirichlet Process Mixtures (DPM),

Constrained DPM and
DPM Low Information Omnibus (LIO) prior hierarchy
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Conclusions: part 2

I NFT has desirable properties
I computationally friendly via MCMC
I very flexible model which does not resort to precarious

restrictive assumptions
I default prior parameter settings that work well without

computationally expensive cross-validation
I naturally extends to variable selection

I Personalized Hematopoietic Stem Cell Transplant (HSCT)
I For Event-free Survival of HSCT recipients

younger donors likely result in better outcomes

> install.packages(’nftbart’)
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