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Plan

▶ I) BART (Bayesian Additive Regression Trees)

▶ II) Monotone BART: mBART

▶ III) Monotonicity Discovery with mBART
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Part I. BART (Bayesian Additive Regression Trees)

The Fundamental Regression Setup:

▶ Data: n observations of y and x = (x1, ..., xp)

▶ Suppose: Y = f (x) + ϵ, ϵ ∼ N(0, σ2)

Bayesian Ensemble Idea: Approximate unknown f (x) by the form

f (x) = g(x ; θ1) + g(x ; θ2) + ... + g(x ; θm)

θ1, θ2, . . . , θm iid ∼ π(θ)

and use the posterior of f given y and x for inference.

BART: Each g(x ; θj) is a regression tree function.

Key calibration: Using y , set π(θ) so that Var(f ) ≈ Var(y).
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Beginning with a Single Tree Model

“θ = (T , M)”
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Bayesian CART: Just add a prior π(M, T )

Bayesian CART Model Search
Chipman, George, McCulloch (1998 JASA), Mallick and Smith (1998)

π(M, T ) = π(M | T )π(T )

π(T ): Stochastic process to generate tree skeleton plus uniform
prior on splitting variables and splitting rules.

π(M | T ) : (µ1, µ2, . . . , µb)′ ∼ Nb(0, τ2I)

Closed form for π(T | y) facilitates MCMC stochastic search for
promising trees.
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Moving on to BART
Bayesian Additive Regression Trees
Chipman, George, McCulloch (2007 NIPS, 2010 AOAS)

The BART ensemble model

Y = g(x ; T1, M1)+g(x ; T2, M2)+. . .+g(x ; Tm, Mm)+σz , z ∼ N(0, 1)

Each (Ti , Mi) identifies a single tree.

For each x , Y is the sum of m bottom node µ’s, plus noise.

Number of trees m can be much larger than sample size n.

g(x ; T1, M1), g(x ; T2, M2), ..., g(x ; Tm, Mm) is a highly redundant
“over-complete basis” with many many parameters.
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Complete the Model with a
“Regularization/Boosting” Prior

π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ)

π applies the Bayesian CART prior to each (Tj , Mj)

▶ Hyperparameters of π are set so that both the Tj ’s and the
µij ’s are likely to be small.

▶ Thus, π keeps the contribution of each g(x ; Tj , Mj) small, to
explain only a small portion of the fit.

The observed variation of Y is used to guide the hyperparameter
settings for the µ and σ priors.

▶ Note that because µij ’s iid ∼ N(0, τ2), we have
Var(Y ) ≈ Var(Σijµij) = mτ2,

which facilitates the calibration of τ2 for BART’s success! 7 / 50



Build up the fit, by adding up tiny bits of fit ..
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Build up the fit, by adding up tiny bits of fit ..
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Connections to Other Modeling Ideas

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Bayesian Nonparametrics:
▶ Lots of parameters (to make model flexible)
▶ A strong prior to shrink towards simple structure (regularization)
▶ BART shrinks towards additive models with some interaction

Gradient Boosting:
▶ Fit becomes the cumulative effort of many weak learners

Dynamic Random Basis Elements:
▶ g(x ; T1, M1), ..., g(x ; Tm, Mm) are dimensionally adaptive
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Some Distinguishing Features of BART

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

BART is NOT Bayesian model averaging of a single tree model

Unlike boosting and random forests, the BART algorithm updates
a fixed set of m trees, over and over

Choose m large for best estimation of E [Y |x ] and prediction
▶ More trees yields more approximation flexibility

Choose m small to measure variable importance
▶ Fewer trees force the x’s to compete for entry
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A Sketch of the BART MCMC Algorithm

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Bayesian Backfitting: Outer loop is a “simple” Gibbs sampler

(Ti , Mi) | Y , all other (Tj , Mj), and σ

σ | Y , (T1, M1, . . . , . . . , Tm, Mm)

To draw (Ti , Mi) above, subtract the contributions of the other
trees from both sides to get a simple one-tree model.

We integrate out Mi to draw Ti and then draw Mi | Ti .

... as the MCMC runs, trees in the sum will grow and shrink,
swapping fit amongst them ....
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Using the MCMC Output to Draw Inference

Each iteration d yields a new draw from the posterior of f

f̂d(·) = g(·; T1d , M1d) + · · · + g(·; Tmd , Mmd)

To estimate f (x) we simply average the f̂d(·) draws at x

Posterior uncertainty is captured by the variation of the f̂d(x)
eg, 95% credible region estimated by middle 95% of values

Can do the same with functionals of f .
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Automatic Uncertainty Quantification

A simple simulated 1-dimensional example
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Out of Sample Prediction Comparisons

Predictive comparisons on 42 data sets
Data from Kim, Loh, Shih and Chaudhuri (2006) (thanks Wei-Yin Loh!)

▶ p = 3 to 65, n = 100 to 7,000.
▶ For each data set 20 random splits into 5/6 train and 1/6 test.
▶ Use 5-fold CV on train to pick hyperparameters (except BART-default!).
▶ Gives 20*42 = 840 out-of-sample predictions. For performance comparisons,

the RMSE of each method is divided by the smallest RMSE of all.

+ Each boxplot represents
840 predictions for a
method

+ 1.2 means you are 20%
worse than the best

+ BART-cv best
+ BART-default does

amazingly well!!
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Measuring Variable Importance with BART
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A Competitive Bottleneck for Entry
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Example: The Friedman Test Function
BART variable importance on data simulated from:

Y = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + 0x6 + · · · + 0x10 + ϵ
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Part II. Monotone BART - mBART

mBART: Multidimensional Monotone BART
Chipman, George, McCulloch, Shively (2021 Bayesian Analysis)

The Key Idea:

BART approximates a function by a sum of tree functions

mBART approximates a monotone function by a sum of monotone
tree functions

This works because of the obvious fact:

The sum of monotone functions yields a monotone function
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An Example of a Monotone Tree Function

x1

x2

f(x) Three different views of
a bivariate monotone
tree.
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In what sense is this tree function monotone?

x1

x2

f(x)

A tree function g(x ; T , M) is said to be monotone nondecreasing
in xi if for all x−i and δ > 0,

g(xi , x−i ; T , M) ≤ g(xi + δ, x−i ; T , M)

For simplicity and wlog, let’s restrict attention to monotone
nondecreasing tree functions.
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The mBART Prior

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Recall the BART parameter

θ = ((T1, M1), (T2, M2), . . . , (Tm, Mm), σ)

Let S = {θ : each (Tj , Mj) is monotone in a desired subset of x ′
i s}

To impose the monotonicity we simply truncate the BART prior
π(θ) to the set S

π∗(θ) ∝ π(θ) IS(θ)

where IS(θ) is 1 if every tree in θ is monotone.
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Forcing a tree to be monotone is easy: we simply constrain the
mean level of a node to be greater than those of its
“below-neighbors”, and less than those of its “above-neighbors”.
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For example, the mean level of node 13 must be greater than those
of 10 and 12 and less than that of node 7.

For any bottom node µ, given the rest of the tree, we can figure
out (and easily code) its interval of constraint.

Because we only make local changes via the MCMC algorithm, this
criterion suffices for all computations.

The remaining challenge is the construction of a new algorithm
which can handle the nonconjugacy of truncated priors on µ’s.
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A New BART MCMC “Christmas Tree” Algorithm

π((T1, M1), (T2, M2), . . . , (Tm, Mm), σ | y))

Bayesian Backfitting again: Iteratively sample each (Tj , Mj) given
(y , σ) and other (Tj , Mj)’s

Each (T 0, M0) → (T 1, M1) update is sampled as follows:
▶ Denote move as

(T 0, M0
Common, M0

Old) → (T 1, M0
Common, M1

New )
▶ Propose T ∗ via birth, death, etc.
▶ If M-H with π(T , M | y) accepts (T ∗, M0

Common)
▶ Set (T 1, M1

Common) = (T ∗, M0
Common)

▶ Sample M1
New from π(MNew | T 1, M1

Common, y)

Only M0
Old → M1

New needs to be updated.

Works for both BART and mBART.
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Example: Product of two x ’s

Let’s consider a very simple simulated monotone example:

Y = x1 x2 + ϵ, xi ∼ Uniform(0, 1).

Here is the plot of the true function f (x1, x2) = x1 x2
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First we try a single (just one tree), unconstrained tree model.

Here is the graph of the fit.

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

x1

x2

x1

x2

f(x)

The fit is not terrible, but there are some aspects of the fit which
violate monotonicity.
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Here is the graph of the fit with the monotone constraint:
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We see that our fit is monotonic, and more representative of the
true f .
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Here is the unconstrained BART fit:
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Much better (of course) but not monotone!
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And, finally, the constrained BART fit:
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Not Bad!

Same method works with any number of x’s!
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Automatic Uncertainty Quantification

Revisiting our simple simulated 1-dimensional example
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mBART intervals are tighter!
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Example: RMSE Reduction by Monotone Regularization

Y = x1 x2
2 + x3 x3

4 + x5 + ϵ,

ϵ ∼ N(0, σ2), xi ∼ Uniform(0, 1).

For various values of σ, we simulated 5,000 observations.
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RMSE improvement of mBART over BART
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Part III. Discovering Monotonicity with mBART

Suppose we don’t know if f (x) is monotone up, monotone down or
even monotone at all.

Of course, a simple strategy would be to simply compare the fits
from BART and mBART.

Good news! We can do even better than this by deploying mBART
to simultaneously estimate all the monotone components of f .

With this strategy, monotonicity can be discovered rather than
imposed!
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The Monotone Decomposition of a Function

To begin simply, suppose x is one-dimensional and f is of bounded
variation.

The Jordan Decomposition Theorem: Any such f can be
uniquely written (up to an additive constant) as the sum
of its monotone up and monotone down components

f (x) = fup(x) + fdown(x)

where
▶ when f (x) is increasing, fup(x) increases at the same

rate and is flat otherwise,
▶ when f (x) is decreasing, fdown(x) decreases at the

same rate and is flat otherwise.
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The Monotone Discovery Strategy with mBART

Key Idea: To discover the monotone decomposition of f , we treat
f (x) as embedded in a two-dimensional function

f ∗(x1, x2) = fup(x1) + fdown(x2).

Letting x1 = x2 = x be duplicate copies of x , we simply estimate
f ∗(x1, x2) with mBART
▶ constrained to be monotone up in the x1 direction, and
▶ constrained to be monotone down in the x2 direction.

Thus, we are estimating the monotone “projections” of f ∗(x1, x2)
along the x1 and x2 axes, i.e.
▶ P[x1]f ∗(x1, x2) = fup(x1)
▶ P[x2]f ∗(x1, x2) = fdown(x2)
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Example: Suppose Y = x3 + ϵ.
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Note that f̂down ≈ 0 (the red in the right plot), as we would expect
when f is monotone up.

Remark: mBARTD = f̂up + f̂down is an alternative estimate of f
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As the sample size is increased from 200 to 1,000, f̂down gets even
flatter.
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mBARTD, fup, fdown

mBART: fup

mBART: fdown

mBARTD: overall fit

Suggests consistent estimation of the monotone components!!
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Example: Suppose Y = x2 + ϵ.
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mBARTD, fup, fdown

mBART: fup

mBART: fdown

mBARTD: overall fit

▶ On the left, BART is good, but simple mBART is not.
▶ On the right, f̂up and f̂down are spot on.
▶ And mBARTD = f̂up + f̂down seems even better than BART!
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Example: Suppose Y = sin(x) + ϵ.
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mBARTD, fup, fdown

mBART: fup
mBART: fdown
mBARTD: overall fit

▶ BART is great, but simple mBART reveals nothing.
▶ f̂up and f̂down have discovered the monotone decomposition.
▶ And mBARTD = f̂up + f̂down is great too.

To extend this approach to multidimensional x , we simply
duplicate each and every component of x !!!
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Example: House Price Data
n = 128 houses, y = house price ($ thousands),
x = (nbhd (1,2 or 3), size (sq ft thousands), brick (B or N)).
Call:
lm(formula = price ~ nbhd + size + brick, data = hdat)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.725 10.766 1.739 0.0845 .
nbhd2 5.556 2.779 1.999 0.0478 *
nbhd3 36.770 2.958 12.430 < 2e-16 ***
size 46.109 5.527 8.342 1.25e-13 ***
brickYes 19.152 2.438 7.855 1.69e-12 ***
---

Residual standard error: 12.5 on 123 degrees of freedom
Multiple R-squared: 0.7903,Adjusted R-squared: 0.7834
F-statistic: 115.9 on 4 and 123 DF, p-value: < 2.2e-16

If the linear model is correct, we are monotone up in all three
variables.

Remark: For the linear model we have to dummy up nbhd, but for
BART and mBART we can simply leave it as an ordered numerical
categorical variable.
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Let’s first compare BART, mBART (constrained up), and
mBARTD to estimate the effect of size conditionally on the six
possible values of (nbdh, brick)
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mBARTD: conditional effect of size

Note how mBARTD = f̂up + f̂down adaptively shrinks the estimates
towards the mBART estimates.
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The full picture emerges from estimates of the effect of size via f̂up
and f̂down conditionally on the six possible values of (nbdh, brick)
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mBART, fdown: conditional effect of size

Price is clearly conditionally monotone up in all three variables!

By simultaneously estimating f̂up and f̂down, we have discovered
monotonicity without any imposed assumptions!!!
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This can all be most conveniently done using the mBART variable
importance strategy to gauge the relationships between y = price
and x = (sizeUp, sizeDn, nbhdUp, nbhdDn, brickUp, brickDn)
y = price and
x = (UpBrick, UpNbhd , UpSize, DnBrick, DnNbhd , DnSize).

x = (sizeUp, sizeDn, nbhdUp, nbhdDn, brickUp, brickDn).
This frequency-of-use variable importance strategy reveals clearly
that price is conditionally monotone up in all three variables:
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Proceeding in this way is essential for larger problems!
43 / 50



0.0

0.2

0.4

0.6

A−sizeUp B−sizeDown C−NbhdUp D−NbhdDown E−BrickUp F−BrickDown
variableName

va
ria

bl
eU

sa
ge

Posterior distribution of percent of rules in tree ensemble using a variable

44 / 50



Example: The Diabetes Data
Benchmark Dataset used in Least Angle Regression
Efron, Hastie, Johnstone, Tibshirani (2004, AOS)

n = 442 diabetes patients, y = disease progression measure,
x = (age, bmi, glu, hdl, ldl, ltg, map, sex, tc, tch)

The mBART variable importance strategy identifies six important
variables together with the direction of their conditional effects
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bmi-U, ltg-U, map-U, glu-U, hdl-D, sex-D.
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▶ Discovery variable importance: put in x and -x.
▶ BART Prior: put tight prior on σ saying you want the same

kind of σ as you got from classic BART.
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bmi-U, ltg-U, map-U, glu-U, hdl-D, sex-D.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.710e-08 2.576e+00 0.000 1.000000
age -4.768e-01 2.845e+00 -0.168 0.867000
sex -1.142e+01 2.915e+00 -3.917 0.000104 ***
bmi 2.475e+01 3.168e+00 7.813 4.30e-14 ***
map 1.545e+01 3.115e+00 4.958 1.02e-06 ***
tc -3.772e+01 1.984e+01 -1.901 0.057947 .
ldl 2.270e+01 1.614e+01 1.406 0.160389
hdl 4.812e+00 1.012e+01 0.475 0.634720
tch 8.432e+00 7.689e+00 1.097 0.273456
ltg 3.578e+01 8.186e+00 4.370 1.56e-05 ***
glu 3.220e+00 3.142e+00 1.025 0.305998
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.15 on 431 degrees of freedom
Multiple R-squared: 0.5177,Adjusted R-squared: 0.5066
F-statistic: 46.27 on 10 and 431 DF, p-value: < 2.2e-16

Not the same !!!!

which one is more useful !!!????
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How about this ????
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.710e-08 2.532e+00 0.000 1.0000

age 2.415e+00 3.120e+00 0.774 0.4393

sex -1.273e+01 3.108e+00 -4.096 5.15e-05 ***

bmi 2.194e+01 4.029e+00 5.446 9.32e-08 ***

map 1.633e+01 3.450e+00 4.734 3.13e-06 ***

tc -1.717e+02 2.885e+03 -0.060 0.9526

ldl 1.444e+02 2.535e+03 0.057 0.9546

hdl 5.263e+01 1.078e+03 0.049 0.9611

tch 3.568e+00 1.313e+01 0.272 0.7860

ltg 8.715e+01 9.483e+02 0.092 0.9268

glu 2.988e+00 3.352e+00 0.891 0.3733

age.2 3.223e+00 3.308e+00 0.974 0.3305

bmi.2 2.183e+00 3.966e+00 0.550 0.5823

map.2 -4.028e-01 3.412e+00 -0.118 0.9061

tc.2 3.175e+02 3.361e+02 0.945 0.3455

ldl.2 1.706e+02 2.536e+02 0.673 0.5016

hdl.2 8.246e+01 7.574e+01 1.089 0.2770

tch.2 3.683e+01 2.890e+01 1.274 0.2034

ltg.2 6.913e+01 8.239e+01 0.839 0.4019

glu.2 5.436e+00 4.482e+00 1.213 0.2260

age.sex 7.080e+00 3.496e+00 2.025 0.0435 *

age.bmi -8.596e-01 3.791e+00 -0.227 0.8208

age.map 8.825e-01 3.633e+00 0.243 0.8082

age.tc -7.566e+00 2.939e+01 -0.257 0.7969

age.ldl -3.204e+00 2.355e+01 -0.136 0.8919

age.hdl 9.964e+00 1.336e+01 0.746 0.4563

age.tch 8.808e+00 1.002e+01 0.879 0.3798

age.ltg 5.937e+00 1.066e+01 0.557 0.5778

age.glu 2.980e+00 3.827e+00 0.779 0.4367

sex.bmi 3.077e+00 3.710e+00 0.829 0.4074

sex.map 4.213e+00 3.559e+00 1.184 0.2373

sex.tc 2.065e+01 2.813e+01 0.734 0.4634

sex.ldl -1.680e+01 2.233e+01 -0.752 0.4523

sex.hdl -5.940e+00 1.304e+01 -0.455 0.6491

sex.tch -6.249e+00 9.510e+00 -0.657 0.5115

sex.ltg -5.666e+00 1.079e+01 -0.525 0.5996

sex.glu 2.179e+00 3.507e+00 0.621 0.5348

bmi.map 7.368e+00 4.111e+00 1.792 0.0739 .

bmi.tc -1.438e+01 3.181e+01 -0.452 0.6514

bmi.ldl 1.150e+01 2.672e+01 0.431 0.6670

bmi.hdl 5.807e+00 1.571e+01 0.370 0.7118

bmi.tch -1.593e+00 1.099e+01 -0.145 0.8849

bmi.ltg 5.461e+00 1.219e+01 0.448 0.6544

bmi.glu 1.113e+00 4.335e+00 0.257 0.7975

map.tc 2.278e+01 3.249e+01 0.701 0.4837

map.ldl -1.556e+01 2.735e+01 -0.569 0.5698

map.hdl -8.919e+00 1.474e+01 -0.605 0.5455

map.tch -2.776e+00 9.457e+00 -0.294 0.7693

map.ltg -7.371e+00 1.295e+01 -0.569 0.5696

map.glu -6.356e+00 4.348e+00 -1.462 0.1447

tc.ldl -4.435e+02 5.605e+02 -0.791 0.4294

tc.hdl -1.872e+02 1.817e+02 -1.030 0.3036

tc.tch -1.050e+02 8.390e+01 -1.252 0.2113

tc.ltg -1.810e+02 6.270e+02 -0.289 0.7730

tc.glu -8.395e+00 2.836e+01 -0.296 0.7673

ldl.hdl 1.258e+02 1.508e+02 0.835 0.4045

ldl.tch 5.747e+01 7.002e+01 0.821 0.4124

ldl.ltg 1.320e+02 5.219e+02 0.253 0.8004

ldl.glu 4.077e+00 2.405e+01 0.170 0.8655

hdl.tch 5.659e+01 4.773e+01 1.186 0.2365

hdl.ltg 6.988e+01 2.195e+02 0.318 0.7504

hdl.glu 1.036e+01 1.413e+01 0.733 0.4640

tch.ltg 1.856e+01 2.975e+01 0.624 0.5330

tch.glu 1.122e+01 1.119e+01 1.003 0.3167

ltg.glu 3.977e+00 1.261e+01 0.316 0.7525

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 53.23 on 377 degrees of freedom

Multiple R-squared: 0.5924,Adjusted R-squared: 0.5233

F-statistic: 8.563 on 64 and 377 DF, p-value: < 2.2e-16
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How about this ????
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Boosting or RF or Deep Learning with SHAP values ???!!!

Still more quesions than answers, but I would definitely use
mBARTD !!!!!!
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